Изучив материал данной главы, студент должен:

знать

  • историю развития программных средств для работы с графикой;
  • области применения компьютерной графики;
  • классификацию компьютерной графики, типы представления графической информации;
  • основные виды описания графики, их достоинства и недостатки;

уметь

  • разбираться в графических форматах;
  • ориентироваться в среде различной цифровой графики и оптимально ее использовать;
  • применять полученные знания для освоения графических программ;

владеть

  • необходимой терминологией;
  • сведениями, используемыми в практической работе с цифровыми изображениями.

Понятие, история развития, области применения и виды компьютерной графики

Понятие и история компьютерной графики

Компьютерная графика (машинная, цифровая графика) – область деятельности, в которой компьютеры используются в качестве инструмента для создания изображений, а также для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют и результат этой деятельности.

История компьютерной графики. Первые вычислительные машины не имели специальных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

В 1961 г. программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Игра Spacewar была создана на машине PDP-1.

В 1963 г. американский ученый Айвен Сазерленд создал программноаппаратный комплекс Sketchpad , который позволял рисовать точки, линии и окружности на трубке цифровым пером (световое перо (англ. light реп ) – один из инструментов ввода графических данных в компьютер, разновидность манипуляторов). Поддерживались базовые действия с примитивами – перемещение, копирование и др. По сути, это был первый векторный редактор , реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причем она являлась таковой еще до появления самого термина.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 г. General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1964 г. группой под руководством II. II. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм "Кошечка", который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1968 г. существенного прогресса компьютерная графика достигла с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.

Области применения цифровой графики

Научная графика – первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше представить полученные результаты, производилась их графическая обработка, строились графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства – графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика – область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки – для них с помощью компьютерной графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.

Иллюстративная графика – рисование, черчение, моделирование на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика популярна во многом благодаря развитию фотографии, рекламы и телевидения. С помощью компьютера создаются печатные материалы, различного рода рекламная продукция, мультфильмы, компьютерные игры, интерактивные и видеоуроки, слайд- и видеопрезентации. Кроме графических редакторов, для этих целей используются графические пакеты, требующие больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и движущихся картинок. Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связаны с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, расположения теней, фактуры поверхности требует расчетов, учитывающих законы оптики.

Компьютерная анимация – создание движущихся изображений. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Мультимедиа – объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

Научная работа. Компьютерная графика является также одной из областей научной деятельности. В области компьютерной графики защищаются диссертации, а также проводятся различные конференции. На факультете вычислительной математики и кибернетики (ВМиК) МГУ им. М. В. Ломоносова действует лаборатория компьютерной графики.

Виды компьютерной графики

По способам задания изображений компьютерную графику можно разделить на категории. Три основных категории – растровая, векторная и трехмерная графика.

Двумерная графика (2D – от англ. two dimensions два измерения) – это изображение на плоскости, имеющее длину и ширину. Двумерная компьютерная графика классифицируется по типу представления графической информации и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют еще и фрактальный тип представления изображений.

В растровой графике всякое изображение рассматривается как совокупность точек разного цвета. В векторной графике изображение является совокупностью простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и др., которые называются графическими примитивами.

  • Примитив (графический примитив) – простейшая геометрическая фигура.
  • Векторный редактор – программа для создания и редактирования векторных изображений.
  • Фрактал (от лат. fractus – состоящий из фрагментов) – структура, формирующаяся из нерегулярных отдельных элементов, которые подобны целому. Описать такой объект можно всего лишь несколькими математическими уравнениями.
Урок "Компьютерная графика"

Компьютерная графика - раздел информатики, пред метом которого является создание и обработка на компьютере с гра­фических изображений (рисунков, чертежей, фотографий и пр.)

История компьютерной графики

О компьютерной графике заговорили после опытов Джей У. Форрестера (инженер компьютерной лаборатории Массачусетского технологического института) в 1951 году.

К предшественникам компьютерных рисунков можно отнести первые не­затейливые картинки из точек и букв, получаемые на телетайпах телеграфа, а позже - на печатающих устройствах, подключенных к ЭВМ.

Итак, в начале были точки и простые линии. Этот набор стремительно обогащался. 1970-е годы стали временем широкого использования машинной графики. Одно из важнейших отличий современных ПК состоит в воз­можности вывода на экран графического изображения.

В доступный для многих инструмент компьютерная графика превратилась благодаря Айвену Сазерленду, автору одной из первых графических систем.

Направления компьютерной графики

Направление

Назначение

Программное обеспечение

Научная

Визуализация объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов.

Деловая

Создание иллюстраций, используемых составления иллюстрации статистических отчетов и пр.

Используется в работе учреждений.

Электронные таблицы

Конструкторская

Создание плоских и трехмерных изображений.

Используется в работе инженеров-конструкторов.

Системы автоматизированного проектирования (САПР)

Иллюстративная

Создание произвольных рисунков и чертежей.

Графические редакторы

Создание реалистических изображений. Используется для создания рекламных роликов, мультфильмов, компьютерных игр, видеоуроков, видеопрезентаций и пр.

Графические редакторы (со сложным математическим аппаратом)

Компьютерная анимация

Создание движущихся изображений на экране монитора. Слово «анимация» означает «оживление».

Аналоговый и дискретный способы представления

ГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ

Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых, обонятельных ).

Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий, …)

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно .

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно .

Все органы чувств человека имеют дело с аналоговыми сигналами.

Любая информация, используемая в технических системах, также начинается и заканчивается аналоговым сигналом.

Таким образом, представление об аналоговом способе следует рассматривать в качестве необходимой предпосылки перехода к цифровым технологиям.

Растровая графика

Качество кодирования изображения зависит от :

Размера точки - чем меньше её размер, тем больше количество точек в изображении

- количества цветов (палитры) - чем большее количество возможных состояний точки, тем качественнее изображение

Достоинства растровой графики:

1. Каждому видеопикселю можно придать любой из миллионов цветовых оттенков. Если размеры пикселей приближаются к размерам видеопикселей, то растровое изображение выглядит не хуже фотографии. Таким образом, растровая графика эффективно представляет изображения фотографического качества.

2. Компьютер легко управляет устройствами вывода, которые используют точки для представления отдельных пикселей. Поэтому растровые изображения могут быть легко распечатаны на принтере.

Недостатки растровой графики:

1. В файле растрового изображения запоминается информация о цвете каждого видеопикселя в виде комбинации битов. Простые растровые картинки занимают небольшой объем памяти (несколько десятков или сотен килобайтов). Изображения фотографического качества часто требуют нескольких мегабайтов. Таким образом, для хранения растровых изображений требуется большой объем памяти.

Самым простым решением проблемы хранения растровых изображений является увеличение емкости запоминающих устройств компьютера. Современные жесткие и оптические диски предоставляют значительные объемы памяти для данных. Оборотной стороной этого решения является стоимость, хотя цены на эти запоминающие устройства в последнее время заметно снижаются.

Другой способ решения проблемы заключается в сжатии графических файлов, т. е. использовании программ, уменьшающих размеры файлов растровой графики за счет изменения способа организации данных. Существует несколько методов сжатия графических данных.

2. Проблемой растровых файлов является масштабирование:

- при существенном увеличении изображения появляется зернистость, ступенчатость

При большом уменьшении существенно снижается количество точек, поэтому исчезают наиболее мелкие детали, происходит потеря четкости

Для обработки растровых файлов используют редакторы: MS Paint, Adobe Photoshop

Векторная графика

Векторные изображения формируются из объектов (точка, линия, окружность, прямоугольник...), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул.

Достоинства векторной графики

1. При кодировании векторного изображения хранится не само изображение объекта, а координаты точек, используя которые программа каждый раз воссоздает изображение заново.

Поэтому объем памяти векторных изображений очень мал по сравнению с растровой графикой .

RECTANGLE 1, 1, 200, 200, Red, Green

Несжатое растровое описание квадрата требует примерно в 1333 раза большей памяти, чем векторное.

2. Векторные изображения могут быть легко масштабированы без потери качества.

Это возможно, так как масштабирование изображений производится с помощью простых математических операций (умножения параметров графических примитивов на коэффициент масштабирования).

Недостатки векторной графики

1. Векторная графика не предназначена для создания изображений фотографического качества. В векторном формате изображение всегда будет выглядеть, как рисунок.

В последних версиях векторных программ внедряется все больше элементов "живописности" (падающие тени, прозрачности и другие эффекты, ранее свойственные исключительно программам точечной графики).

2. Векторные изображения иногда не выводятся на печать или выглядят на бумаге не так, как хотелось бы.

Это происходит оттого, что векторные изображения описываются тысячами команд.

В процессе печати эти команды передаются принтеру, а он может, не распознав какой-либо примитив, заменить его другим – похожим, понятным принтеру.

Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами: CorelDRAW, Adobe Illustrator.

Фрактальная графика

Изображение строится по формуле. В памяти компьютера хранится не изображение, а только формула, с помощью которой можно получить бесконечное количество различных изображений.

Фракталы - это геометрические объекты с удивительными свойствами: любая часть фрактала содержит его уменьшенное изображение.

То есть, сколько фрактал не увеличивай, из любой его части на вас будет смотреть его уменьшенная копия.

Основные понятия компьютерной графики.

Основные понятия по теме

Общая характеристика и функциональные возможности графического редактора Photoshop

Общая характеристика и функциональные возможности графического редактора Corel DRAW

Графические форматы данных

Компьютерная графика, ее классификация, основные понятия

Тема 5 Технологии и системы обработки графической информации

Цифровым принято называть изображение, созданное с использованием компьютерной программы с нуля; либо изображение (слайд, фотография), преобразованное в электронную информацию для того, чтобы просматривать, редактировать и управлять им на экране компьютера.

Устройства, преобразующие графические изображения в цифровую форму, называются оцифровывающими (сканеры, цифровые фотоаппараты)

Цветовая модель - ϶ᴛᴏ средство описания цветов с целью их дальнейшего последовательного воссоздания.

Различают три вида компьютерной графики: растровая графика , векторная графика и фрактальная графика . Οʜᴎ отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку.

векторной графикой предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику часто используют в развлекательных программах.

Разрешение изображения и его размер. В компьютерной графике следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, ĸᴏᴛᴏᴩᴏᴇ может поместиться на экране целиком.

Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые бывают напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения - его физическим размером.

Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. В случае если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает.


  • - ОСНОВНЫЕ ПОНЯТИЯ КОМПЬЮТЕРНОЙ ГРАФИКИ

    Векторная графика. В отличие от растровой графики, в которой основным элементом изображения является точка, в векторной графике базовым элементом является линия (при этом не важно, прямая это линия или кривая). Разумеется, в растровой графике тоже существуют линии, но... [читать подробенее]


  • -

    2. Государства - участники принимают любые эффективные и необходимые меры с целью упразднения традиционной практики, отрицательно влияющей на здоровье детей. 4. Государства – участники обязуются поощрять международное сотрудничество и развивать его с целью...

    §18. Компьютерная графика
    §21. Растровая и векторная графика

    Основные темы параграфа:

    История компьютерной графики;
    - научная графика;
    - деловая графика;
    - конструкторская графика;
    - иллюстративная графика;
    - трехмерная графика;
    - компьютерная анимация.

    Изучаемые вопросы:




    - Растровая графика
    - Векторная графика.

    В наше время редко найдется школьник, который бы не играл в компьютерные игры или хотя бы не видел, как в них играют другие. На экране монитора, как на телеэкране, бегают человечки, летают самолеты, мчатся гоночные машины... Чего только нет! Причем качество цветного изображения на современном персональном компьютере бывает лучше, чем у телевизора.

    Раздел информатики, занимающийся проблемами создания и обработки на компьютере графических изображений, называется компьютерной графикой.

    Как же получаются все эти «картинки» на экране компьютера? Вы уже хорошо знаете, что любую работу компьютер выполняет по определенным программам, которые обрабатывают определенную информацию. Монитор - это устройство вывода информации , хранящейся в памяти компьютера. Значит, и «картинки» на экране - это отображение информации, находящейся в компьютерной памяти .

    История компьютерной графики

    Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бумагу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций. Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными. Таково уж свойство человеческой психики: наглядность - важнейшее условие для понимания.

    Возникла идея поручить графическую обработку самой машине . Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей (рис. 4.1).

    С помощью символьной печати программисты умудрялись получать даже художественные изображения. В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.

    Затем появились специальные устройства для графического вывода на бумагу - графопостроители (другое название - плоттеры ). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображения: графики, диаграммы, технические чертежи и пр. Для управления работой графопостроителей стали создавать специальное программное обеспечение.

    Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки и чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов.

    Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Существуют принтеры цветной печати, дающие качество рисунков на уровне фотографии.

    Приложения компьютерной графики очень разнообразны. Для каждого направления создается специальное программное обеспечение, которое называют графическими программами, или графическими пакетами.

    Научная графика

    Это направление появилось самым первым. Назначение - визуализация (т. е. наглядное изображение) объектов научных исследований , графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов (рис. 4.2).


    Эта область компьютерной графики предназначена для создания иллюстраций , часто используемых в работе различных учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (рис. 4.3).

    Программные средства деловой графики обычно включаются в состав табличных процессоров (электронных таблиц), с которыми мы познакомимся позже.

    Она применяется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в САПР используется для подготовки технических чертежей проектируемых устройств (рис. 4.4).

    Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения) и пространственные, трехмерные изображения.

    Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования и черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности, поэтому они относятся к прикладному программному обеспечению общего назначения.

    Простейшие программные средства иллюстративной графики называются графическими редакторами. Подробнее о графических редакторах речь пойдет ниже.

    Трехмерной графикой (3D-графикой) называют технологию, позволяющую получать на устройствах вывода компьютера объемные изображения. Программы для работы с трехмерной графикой называют программами трехмерного моделирования. Эти программы позволяют создавать высококачественные изображения, очень похожие на фотографии. В самом названии «трехмерный» заложено указание на то, что объект рассматривается в трех измерениях (ширина, высота и глубина). В то же время экранное изображение трехмерных объектов, как и печатное, является всего лишь их двумерным образом. Эти образы на экране выглядят вполне реально благодаря наличию источников света, естественной окраске, присутствию теней и бликов, придающих изображению глубину и делающих его визуально правдоподобным (рис. 4.5).

    Таким образом, основная задача пользователя программы трехмерного моделирования - создать сцену - совокупность образов трехмерных объектов.

    Широкое применение 3D-графика находит в архитектурном и техническом проектировании, рекламе, кинематографии, различных учебных и тренажерных системах, компьютерных играх.

    Создание изображений в программах трехмерного моделирования состоит из пяти этапов.

    1. Моделирование - создание формы трехмерного объекта.
    2. Наложение материалов . Материалы - краски и текстуры, которыми покрываются объекты. Кроме того, материалы определяют такие свойства объектов, как шероховатость, блеск, прозрачность.
    3. Расстановка источников света . Освещение придает сцене ощущение объемности и реальности, так как источники света способны создавать тени, когда их лучи падают на объекты.
    4. Установка камер . Программы трехмерного моделирования предоставляют возможность рассматривать сцену через виртуальную съемочную камеру (фотоаппарат). Камера может устанавливаться в разных позициях, что дает возможность отражать сцену в различных ракурсах.
    5. Визуализация - формирование изображения. Визуализация выполняется специальным программным обеспечением и может занимать довольно продолжительное время, зависящее от сложности сцены и быстродействия компьютера. Именно на этом этапе программа рассчитывает и наносит на изображение все тени, блики и отражения объектов.

    На первых четырех этапах используются законы векторной графики. В результате визуализации создается растровое изображение.

    Получение движущихся изображений на мониторе компьютера называется компьютерной анимацией . Слово «анимация» означает «оживление».

    В недавнем прошлом художники-мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Существуют системы, в которых используется покадровая анимация, основанная на ключевых (наиболее важных) кадрах. Компьютерный художник создает на экране лишь изображения объектов в ключевых кадрах, а все положения объектов в промежуточных кадрах рассчитываются специальными программами.

    Такая работа связана с расчетами, опирающимися на математическое описание данного типа движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения (рис. 4.6).

    Многие современные анимационные фильмы создаются в технологии трехмерной графики. В некоторых игровых фильмах наряду с «живыми» артистами и реальными декорациями участвуют персонажи, созданные на компьютере. Одним из первых известных фильмов такого рода были «Звездные войны». Многие компьютерные игры построены в технологии 3D-анимации.

    В начале появления 3D-анимации такая работа была по силам только суперкомпьютерам. Позже для персональных компьютеров были разработаны устройства под названием 3D-акселераторы (ускорители трехмерной графики). На современных ПК эти устройства делают доступными для пользователей трехмерные игры.

    Коротко о главном

    Область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

    Для создания графических изображений требуется специальное программное обеспечение - графические пакеты .

    Основные области применения компьютерной графики : научная графика, деловая графика, конструкторская графика, иллюстративная графика, трехмерная графика.

    Это получение движущихся изображений на экране монитора.

    Вопросы и задания

    1. Что называют компьютерной графикой?

    2. Каким способом создавали рисунки на ЭВМ до появления аппаратных и программных средств компьютерной графики?

    3. На какие устройства производится вывод графических изображений?

    4. В чем преимущество графического дисплея перед другими устройствами графического вывода?

    5. Опишите основные области применения компьютерной графики.

    6. Что такое компьютерная анимация?

    Растровая и векторная графика

    Основные темы параграфа:

    Два принципа представления изображения;
    - растровая графика;
    - векторная графика.

    Изучаемые вопросы:

    История компьютерной графики
    - Области применения компьютерной графики.
    - Два принципа представления изображения.
    - Растровая графика
    - Векторная графика.

    Два принципа представления изображения

    В компьютерной графике существуют два различных подхода к представлению графической информации. Они называются, соответственно, растровым и векторным. С растровым подходом вы уже знакомы. Суть его в том, что всякое изображение рассматривается как совокупность точек разного цвета. Векторный подход рассматривает изображение как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и пр., которые называются графическими примитивами .

    В растровой графике графическая информация - это совокупность данных о цветах пикселей на экране. В векторной графике графическая информация - это данные, однозначно определяющие все графические примитивы, составляющие рисунок.

    Положение и форма графических примитивов задаются в системе графических координат , связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось Y - сверху вниз .

    Отрезок прямой линии однозначно определяется указанием координат его концов; окружность - координатами центра и радиусом; многоугольник - координатами его вершин; закрашенная область - граничной линией и цветом закраски и пр.

    Для примера рассмотрим «маленький монитор» с растровой сеткой размером 10 х 10 и черно-белым изображением. На рисунке 4.11 одна клетка соответствует пикселю. Приведено изображение буквы «К». Для кодирования изображения в растровой форме на таком экране требуется 100 битов (1 бит на пиксель).

    На рисунке 4.12 этот код представлен в виде битовой матрицы, в которой строки и столбцы соответствуют строкам и столбцам растровой сетки (1 обозначает закрашенный пиксель, а 0 - незакрашенный).

    В векторном представлении буква «К» - это три линии. Всякая линия описывается указанием координат ее концов в таком виде:

    ЛИНИЯ (X1,Y1,X2,Y2)

    Изображение буквы «К» на рис. 4.11 описывается следующим образом:

    ЛИНИЯ (4,2,4,8)

    ЛИНИЯ (5,5,8,2)

    ЛИНИЯ (5,5,8,8)

    Для цветного изображения кроме координат указывается еще один параметр - цвет линии .

    Для создания рисунков на компьютере используются графические редакторы . Графические редакторы бывают растровыми и векторными * . Графическая информация о рисунках, созданных с помощью редактора, сохраняется в файлах на диске. Существуют разнообразные форматы графических файлов. Их также можно разделить на растровые и векторные форматы. Растровые графические файлы хранят информацию о цвете каждого пикселя изображения на экране. В графических файлах векторного формата содержатся описания графических примитивов, составляющих рисунок.

    *
    Графический редактор Paint является растровым, a CorelDraw - векторным.

    Растровая графика

    Растровые графические редакторы называют программами «картинного стиля», поскольку в них есть инструменты, которые используют художники при рисовании картин: «кисти», «краски», «ластики» и др. При создании растрового изображения пользователь словно водит кистью по «электронному полотну», закрашивая каждый пиксель рисунка, или стирает закраску пикселей, используя «ластик».

    При вводе изображений с помощью сканера (фотографий, рисунков, документов) также формируются графические файлы растрового формата. При выводе таких изображений на экран достигается их высокое качество (рис. 4.13). Это основное достоинство растровой графики.

    Основной недостаток растровой графики - большой размер графических файлов. Простые растровые картинки занимают несколько десятков или сотен килобайтов. Реалистические изображения, полученные с помощью сканеров с высокой разрешающей способностью, могут занимать несколько мегабайтов. По этой причине информация в файлах растрового формата, как правило, хранится в сжатом виде. Для сжатия графической информации используются специальные методы, позволяющие сократить ее объем в десятки раз.

    Еще одним недостатком растровых изображений является их искажение, возникающее при изменении размеров, вращении и других преобразованиях. Картинка, которая прекрасно выглядела при одном размере, после масштабирования или вращения может потерять свою привлекательность. Например, в областях однотонной закраски могут появиться ненужные узоры; кривые и прямые линии могут приобрести пилообразную форму и т. п.

    Векторная графика

    Векторные изображения получаются с помощью графических редакторов векторного типа - редакторов иллюстративной графики. Эти редакторы предоставляют в распоряжение пользователя набор инструментов и команд, с помощью которых создаются рисунки. Прямые линии, окружности, эллипсы и дуги являются основными компонентами векторных изображений. Одновременно с процессом рисования специальное программное обеспечение формирует описания графических примитивов, из которых строится рисунок. Эти описания сохраняются в графическом файле.

    На рисунке 4.14 показан экран векторного редактора OpenOffice.org Draw (ОС Linux).

    К достоинствам векторной графики можно отнести следующие ее свойства.

    Графические файлы векторного типа имеют относительно небольшие размеры. Рисунки, состоящие из тысяч примитивов, занимают дисковую память, объем которой не превышает нескольких сотен килобайтов. Аналогичный растровый рисунок требует в 10 - 1000 раз большую память.

    Векторные изображения легко масштабируются без потери качества. Чтобы изменить размер векторного рисунка, нужно исправить его описание. Например, для увеличения или уменьшения эллипса достаточно в его описании изменить координаты левого верхнего и правого нижнего углов прямоугольника, ограничивающего эллипс. И снова для рисования объекта будет использовано максимально возможное число пикселей.

    Следует понимать, что различие в представлении графической информации в растровом и векторном форматах существует лишь для файлов. При выводе на экран любого изображения в видеопамяти формируется информация, содержащая данные о цвете каждого пикселя экрана.

    Коротко о главном

    Существуют два подхода к представлению изображения на компьютере: растровый и векторный .

    Растровая графическая информация - это сведения о цвете каждого пикселя при выводе изображения на экран.

    Векторная графическая информация - это описания графических элементов (примитивов), из которых составлен рисунок: прямых линий, дуг, эллипсов, прямогоугольников, закрасок и пр.

    Растровые графические редакторы формируют графические файлы с данными растрового типа . Векторные редакторы формируют графические файлы векторных форматов.

    При сканировании изображений формируется графическая информация растрового типа.

    Растровый формат позволяет получать изображения фотографического качества; растровые графические файлы имеют большой размер и обычно подвергаются сжатию.

    Файлы векторного формата относительно невелики. Векторное изображение хорошо поддается растяжению и сжатию, не теряя при этом качества .

    Вопросы и задания

    1. В чем разница между растровым и векторным способами представления изображения?

    2. Что такое графические примитивы?

    3. Какая информация хранится в файлах растрового типа и в файлах векторного типа?

    4. Что такое система графических координат?

    5. С помощью каких средств (программных, технических) получается растровая и векторная графическая информация? Подготовьте доклад.

    6. Какой способ представления графической информации экономнее по использованию памяти?

    7. Для чего производится сжатие файлов растрового типа?

    8. Как реагируют растровые и векторные изображения на изменение размеров, вращения?

    9. Получите растровые коды и векторы описания для изображения букв «Н», «Л», «Т» на черно-белом экране с графической сеткой размером 8 x 8 .

    Электронное приложение к уроку


    Cкачать материалы урока

    В век информационных технологий компьютерная графика получила широкое распространение во всем мире. Почему она так популярна? Где она применяется? И вообще, что такое компьютерная графика? Давайте разберемся!

    Компьютерная графика: что такое?

    Проще всего - это наука. Кроме того, это один из разделов информатики. Он изучает способы обработки и форматирования графического изображения с помощью компьютера.

    Уроки компьютерной графики на сегодняшний день существуют и в школах, и в высших учебных заведениях. И трудно сегодня найти область, где она не была бы востребована.

    Также на вопрос: «Что такое компьютерная графика?» - можно ответить, что это одно из многих направлений информатики и, кроме того, относится к наиболее молодым: оно существует около сорока лет. Как и всякая иная наука, она имеет свой определенный предмет, цели, методы и задачи.

    Какие задачи решает компьютерная графика?

    Если рассматривать этот в широком смысле, то можно увидеть, что средства компьютерной графики позволяют решать следующие три типа задач:

    1) Перевод словесного описания в графическое изображение.

    2) Задача распознавания образов, то есть перевод картинки в описание.

    3) Редактирование графических изображений.

    Направления компьютерной графики

    Несмотря на то что сфера применения этой области информатики, бесспорно, крайне широка, можно выделить основные направления компьютерной графики, где она стала важнейшим средством решения возникающих задач.

    Во-первых, иллюстративное направление. Оно является самым широким из всех, так как охватывает задачи начиная от простой визуализации данных и заканчивая созданием анимационных фильмов.

    Во-вторых, саморазвивающееся направление: компьютерная графика, темы и возможности которой поистине безграничны, позволяет расширять и совершенствовать свои навыки.

    В-третьих, исследовательское направление. Оно включает в себя изображение абстрактных понятий. То есть применение компьютерной графики направлено на создание изображения того, что не имеет физического аналога. Зачем? Как правило, с целью показать модель для наглядности либо проследить изменение параметров и скорректировать их.

    Какие существуют виды компьютерной графики?

    Еще раз: что такое компьютерная раздел информатики, изучающий способы и средства обработки и создания графического изображения с помощью техники. Различают четыре вида компьютерной графики, несмотря на то, что для обработки картинки с помощью компьютера существует огромное количество различных программ. Это растровая, векторная, фрактальная и 3-D графика.

    Каковы их отличительные черты? В первую очередь виды компьютерной графики различаются по принципам формирования иллюстрации при отображении на бумаге или на экране монитора.

    Растровая графика

    Базовым элементом растрового изображения или иллюстрации является точка. При условии, что картинка находится на экране, точка называется пикселем. Каждый из пикселей изображения обладает своими параметрами: цветом и расположением на холсте. Разумеется, что чем меньше размеры пикселей и больше их количество, тем лучше выглядит картинка.

    Основная проблема растрового изображения - это большие объемы данных.

    Второй недостаток растровой графики - необходимость увеличить картинку для того, чтобы рассмотреть детали.

    Кроме того, при сильном увеличении происходит пикселизация изображения, то есть разделение его на пиксели, что в значительной степени искажает иллюстрацию.

    Векторная графика

    Элементарной составляющей векторной графики является линия. Естественно, что в растровой графике тоже присутствуют линии, однако они рассматриваются как совокупность точек. А в векторной графике все, что нарисовано, является совокупностью линий.

    Этот тип компьютерной графики идеален для того, чтобы хранить высокоточные изображения, такие как, например, чертежи и схемы.

    Информация в файле хранится не как графическое изображение, а в виде координат точек, с помощью которых программа воссоздает рисунок.

    Соответственно, для каждой из точек линии резервируется одна из ячеек памяти. Необходимо заметить, что в векторной графике объем памяти, занимаемый одним объектом, остается неизменным, а также не зависит от его размера и длины. Почему так происходит? Потому что линия в векторной графике задается в виде нескольких параметров, или, проще говоря, формулой. Что бы мы ни делали с ней в дальнейшем, в ячейке памяти будут изменяться лишь параметры объекта. Количество ячеек памяти останется прежним.

    Таким образом, можно прийти к выводу, что векторные файлы, по сравнению с растровыми, занимают гораздо меньший объем памяти.

    Трехмерная графика

    3D-графика, или трехмерная графика, изучает методы и приемы создания объемных моделей объектов, максимально соответствующие реальным. Подобные изображения можно рассмотреть со всех сторон.

    Гладкие поверхности и разнообразные графические фигуры используются с целью создания объемных иллюстраций. С их помощью художник создает сначала каркас будущего объекта, а потом поверхность покрывают такими материалами, которые визуально похожи на реальные. Далее делают гравитацию, осветление, свойства атмосферы и прочие параметры пространства, в котором находится изображаемый объект. Затем, при условии, что объект движется, задают траекторию движения и его скорость.

    Фрактальная графика

    Фракталом называется рисунок, состоящий из одинаковых элементов. Большое количество изображений являются фракталами. К примеру, снежинка Коха, множество Мандельброта, треугольник Серпинского, а также «дракон» Хартера-Хейтчея.

    Фрактальный рисунок можно построить либо с помощью какого-либо алгоритма, либо путем автоматического создания изображения, которое осуществляется путем вычислений по заданным формулам.

    Модификация изображения происходит при внесении изменений в структуру алгоритма или смене коэффициентов в формуле.

    Главным преимуществом фрактальной графики является то, что в сохраняются только формулы и алгоритмы.

    компьютерной графики

    Однако необходимо заметить, что выделение данных направлений весьма условно. Кроме того, оно может быть детализировано и расширено.

    Итак, перечислим основные области компьютерной графики:

    1) моделирование;

    2) проектирование;

    3) отображение визуальной информации;

    4) создание пользовательского интерфейса.

    Где применяется компьютерная графика?

    В инженерном программировании широко используется трехмерная компьютерная графика. Информатика в первую очередь пришла на помощь инженерам и математикам. Средствами трехмерной графики происходит моделирование физических объектов и процессов, например, в мультипликации, компьютерных играх и кинематографе.

    Широко применяется при разработке полиграфических и мультимедийных изданий. Очень редко иллюстрации, которые выполняются средствами растровой графики, создаются с помощью компьютерных программ вручную. Зачастую с этой целью пользуются отсканированные изображения, которые художник изготовил на фотографии или бумаге.

    В современном мире широко применяются цифровые фото- и видеокамеры с целью ввода растровых фотографий в компьютер. Соответственно, подавляющее большинство которые предназначены для работы с растровой графикой, ориентированы не на создание изображений, а на редактирование и обработку.

    Растровые изображения применяются в интернете в том случае, если есть необходимость передать всю цветовую гамму.

    А вот программы для работы с векторной графикой, наоборот, чаще всего используются с целью создания иллюстраций, ежели для обработки. Подобные средства нередко используют в издательствах, редакциях, дизайнерских бюро и рекламных агентствах.

    Средствами векторной графики гораздо проще решаются вопросы оформительских работ, которые основаны на применении простейших элементов и шрифтов.

    Бесспорно, существуют примеры векторных высокохудожественных произведений, однако они являются скорее исключением, чем правилом, по той простой причине, что подготовка иллюстраций средствами векторной графики необычайно сложна.

    Для автоматического с помощью математических расчетов созданы программные средства, работающие с факториальной графикой. Именно в программировании, а не в оформлении или рисовании состоит создание факториальной композиции. Факториальная графика редко применяется с целью создания электронного или печатного документа, однако ее нередко используют в развлекательных целях.