Мы выводили картинку на дисплей с sd карточки, но в ней были упущены некоторые моменты, первый - подключение самой карточки, второй - была рассмотрена лишь часть функций библиотеки Petit FatFs , давайте остановимся на этих моментах подробнее.

Общение с карточкой возможно по одному из двух интерфейсов, SPI или SD .



Надо сказать, что SD интерфейс может работать в однобитном и четырёхбитном режимах.

Схема подключения карточки по SPI стандартная и выглядит следующим образом, не используемые выводы карточки нужно с помощью резистора 10К подтянуть к питанию.


Но в любительских конструкциях зачастую пренебрегают подтягивающими резисторами, упрощая схему подключения.

Надо отметить, что при подключении по SPI карточка очень требовательна к напряжению питания и небольшая просадка питающего напряжения приводит к неработоспособности карточки, это проверено на личном опыте, по поводу SD интерфейса сказать нечего, ещё не пробовал. Это всё писал к тому, что по питанию обязательно ставить конденсаторы . Что касается дросселя, он должен быть рассчитан на ток до 100мА, но ставить его необязательно.

На схемах, изображённых выше видно, что для работы карточке необходимо 3.3 вольта, соответственно, в линиях передачи данных напряжение не должно выходить за диапазон 0 – 3.3 вольт и тут возникает вопрос, что делать если МК питается от 5 вольт?
Ответ прост, надо согласовать линии передачи данных, а сделать это можно с помощью обычного резистивного делителя.


На схеме видно, что линию MISO согласовывать не надо так, как по этой линии данные передаются от карточки к МК .
На самом деле, мало кто подключает карточку напрямую к МК, гораздо удобнее подключить к МК разъём для карточки или купить шилд с разъемом и всей необходимой обвязкой.

С подключением разобрались, давайте теперь рассмотрим как пользоваться библиотекой Petit FatFs , которая предназначена для 8-битных микроконтроллеров с малым размером памяти.

Библиотека состоит из 5 файлов:
integer.h - заголовочный файл в котором описаны основные типы данных.

diskio.h - заголовочный файл в котором объявлены прототипы низкоуровневых функций для работы с диском и статусные коды, которые они возвращают.

diskio.c - в этом файле должны быть реализованы низкоуровневые функции, изначально там "заглушки".

pffсonf.h - конфигурационный файл.

pff.h - заголовочный файл в котором объявлены прототипы функций взаимодействия с файловой системой диска.

pff.c - файл содержит реализации функций для взаимодействия с файловой системой диска.

Видно, что для того чтобы библиотека заработала необходимо реализовать низкоуровневые функции. Но если речь идет о AVR или PIC, для них сайте можно скачать пример работы с библиотекой, в котором есть файл mmc , в нем уже реализованы низкоуровневые функции. Также необходимо задать конфигурацию библиотеки в файле pff.h и написать функции необходимые для работы SPI.

Функции Petit FatFs.

FRESULT pf_mount (FATFS*) - функция монтирует/демонтирует диск. Эту функцию необходимо вызывать до начала работы с диском, если вызвать функцию с нулевым указателем диск демонтируется. Функция может быть вызвана в любой момент времени.

Параметры
FATFS* fs - указатель на объект типа FATFS, описание этой структуры можно посмотреть в файле pff.h. Нам надо всего лишь объявить переменную такого типа.

Возвращаемые значения:
FR_OK (0)
FR_NOT_READY - устройство не может быть инициализировано
FR_DISK_ERR - возникла ошибка во время чтения с диска
FR_NO_FILESYSTEM - на диске нет правильного раздела FAT

FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //диск смонтирован, работаем с ним //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

FRESULT pf_open (const char* path) - функция открывает существующий файл. После того как файл открыт с ним можно работать, то есть читать из него и записывать в него. С открытым файлом можно работать до тех пор, пока не будет открыт другой файл. Функция может быть вызвана в любой момент времени.

Параметры
const char* path - указатель на строку, указывающую путь к файлу. Путь надо указывать полностью относительно корневой директории, разделяя директории слэшем.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_NO_FILE - файл не найден
FR_DISK_ERR - ошибка диска
FR_NOT_ENABLED - диск не был смонтирован

FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //делаем что-то } //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //делаем что-то } //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

FRESULT pf_read(void* buff, WORD btr, WORD* br) - функция читает указанное количество байт из файла и сохраняет их в буфер. Если количество прочитанных байт меньше чем указано, значит был достигнут конец файла.
#define _USE_READ 1

Параметры:
void* buff - указатель на буфер, в котором сохраняются прочитанные данные
WORD btr - количество байт, которые нужно прочитать
WORD* br - указатель на переменную, в которой хранится количество прочитанных байт.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт
FR_NOT_ENABLED - диск не был смонтирован

FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //читаем из него 10 байт pf_read(buff, 10, &br); if(br != 10) { //если br не равно 10 //значит мы достигли конца файла } } }

FRESULT pf_write(const void* buff, WORD btw, WORD* bw) - функция позволяет записывать данные в открытый файл. Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_WRITE 1

Параметры:
void* buff - указатель на буфер, который хотим записать, нулевое значение финализирует запись
WORD btw - количество байт, которые хотим записать
WORD* bw - указатель на переменную, хранящий количество байт, которые удалось записать. Анализируя, эту переменную можно узнать был ли достигнут конец файла.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт
FR_NOT_ENABLED - диск не был смонтирован

Из-за того, что библиотека рассчитана на микроконтроллеры с малым объемом памяти, эта функция имеет ряд ограничений:

  • нельзя создавать новые файлы, а записывать можно только в существующие
  • нельзя увеличивать размер файла
  • нельзя обновить временную метку
  • операцию записи можно начать/остановить только на границе сектора
  • файловый атрибут "только для чтения" не может запретить запись

Для того чтобы понять предпоследний пункт, надо знать, что память карточки разбита на блоки(сектора) по 512 байт и запись можно начать только с начала сектора . Таким образом если мы хотим записать 1000 байт, то первый сектор запишется полностью, а во второй запишется только 488 байт, а оставшиеся 24 байта заполнятся нулями.

Для записи в открытый файл надо выполнить следующие действия:

  • установить указатель на границу сектора, если установить не на границу, то указатель будет округлен до нижней границы сектора
  • вызвать функцию записи нужное количество раз
  • финализировать запись, вызвав функцию с нулевым указателем

Для того, чтобы привести пример работы функции записи необходимо рассмотреть ещё одну функцию.

FRESULT pf_lseek(DWORD offset) - устанавливает указатель чтения/записи в открытом файле. Устанавливать указатель можно абсолютным или относительным смещением, для абсолютного смещения необходимо передать в функцию число
pf_lseek(5000);
для относительного, передать значение указателя на текущую позицию fs.fptr и величину смещения
pf_lseek(fs.fptr + 3000);
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_LSEEK 1

Параметры:
DWORD offset - количество байт, на которые нужно сместить указатель.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт

Записать данные в файл можно следующим образом.
FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //устанавливаем указатель на первый сектор pf_lseek(0); //записываем pf_write(buff, 10, &br); //финализируем запись pf_write(0, 0, &br); } }

Также оставляю тут кусок реально работающего кода, в котором используются все выше описанные функции.
#define F_CPU 8000000UL #define buff_size 10 #include #include #include "diskio.h" #include "pff.h" #include "spi.h" FATFS fs;//объявляем объект типа FATFS BYTE read_buff;//буфер для чтения файла BYTE write_buff = "hello word";////буфер для записи в файл UINT br; //счетчик прочитанных байт int main(void) { //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //устанавливаем указатель записи pf_lseek(0); //записываем pf_write(write_buff, buff_size, &br); //финализируем запись pf_write(0, 0, &br); //устанавливаем указатель чтения pf_lseek(0); //читаем то, что записали pf_read(read_buff, buff_size, &br); if(br != buff_size) { //если br не равно buff_size //значит мы достигли конца файла } } //демонтируем диск pf_mount(NULL); } while(1) { } }

FRESULT pf_opendir(DIR* dp, const char * path) - функция открывает существующую директорию и создает указатель на объект типа DIR, который будет использоваться для получения списка файлов открытой директории.
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_DIR 1

Параметры:
DIR *dp - указатель на переменную типа DIR.

const char * path - указатель на строку, которая содержит путь к директории, директории разделяются слэшем

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_NO_PATH - не удалось найти путь
FR_NOT_READY - не удалось инициализировать диск
FR_DISK_ERR - ошибка диска
FR_NOT_ENABLED - диск не был смонтирован

//объявляем переменные FATFS fs; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию pf_opendir(&dir, "MY_FOLDER");

FRESULT pf_readdir(DIR* dp, FILINFO* fno) - функцию позволяет прочитать содержимое директории. Для этого нужно открыть директорию с помощью функции pf_opendir() и вызывать pf_readdir(). Каждый раз при вызове функция будет возвращать название объекта(папки/файла) лежащего в указанной директории. Когда она пройдется по всем объектам, вернет нулевую строку в элементе массива fno.fname.
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_DIR 1

Параметры:
DIR *dp - указатель на переменную типа DIR, которая должна быть предварительно объявлена

FILINFO *fno - указатель на переменную типа FILINFO, которая должна быть предварительно объявлена.

Возвращаемые значения:
FR_OK - успешное завершение функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - не открыта директория

FATFS fs; FRESULT res; FILINFO fno; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию res = pf_opendir(&dir, MY_FOLDER); //читаем содержимое директории for(;;){ res = pf_readdir(&dir, &fno); //проверяем не возникло ли ошибок при чтении // и есть ли еще файлы в указанной директории if ((res != FR_OK) || (fno.fname == 0)){ break; } //выводим удобным способом fno.fname usart_sendStr(fno.name); usart_sendStr(/r); }

Ну и напоследок оставлю тут рабочий проект

Михаил Русских

Приводится краткая информация о SD-картах, даются основы принципа работы шины SD, поясняется порядок использования драйвера stm324xg_eval_sdio_sd, предназначенного для упрощения связи микроконтроллеров семейства STM32 с SD-картами

Некоторые встраиваемые системы должны иметь возможность хранения больших объемов информации. Например, регистраторы различных физических величин и параметров (ток, напряжение, температура, географические координаты) должны сохранять полученные с датчиков показания на определенном носителе, который впоследствии можно было бы извлечь из устройства и подключить к компьютеру для просмотра данных в удобном для пользователя виде. Для решения такой задачи наиболее очевидным кажется использование USB флеш-накопителей. Они широко распространены на рынке и позволяют хранить большие объемы информации. Но для некоторых малых встраиваемых систем первостепенным фактором является компактность, и габариты этих накопителей могут оказаться чрезмерными. Кроме того, не все микроконтроллеры оснащены модулем USB, и разработчик системы может довольно долго разбираться с USB-стеком, что может увеличить время работы над проектом. В связи с этим хорошей альтернативой USB является использование SD-карт, которые очень компактны и позволяют обмениваться данными с помощью распространенного интерфейса SPI или специального интерфейса для SD-карт.

Карты памяти SD (Secure Digital) разработаны, в основном, для применения в портативных устройствах. Сегодня на рынке существует большое количество моделей, предоставляемых такими компаниями как SanDisc, и способных записывать с зависящей от класса скоростью данные объемом от 8 МБ до 2 ТБ. SD-карты, в отличие от MMC-карт, помимо обычной области хранения данных имеют специальную защищенную область, которая недоступна обычному пользователю. Для того чтобы устройство смогло прочитать записанную на SD-карту информацию в виде файлов, эта карта должна иметь определенную файловую систему. Наиболее предпочтительной в данном случае является система FAT, поскольку количество циклов записи/чтения для SD-карт ограничено, а системы вроде NTFS и ext являются журналируемыми, то есть предполагающими частые опросы.

Передача и прием данных осуществляется по интерфейсу SPI или по шине SD. На Рисунке 1 показано расположение выводов SD-карт различных типов, а в Таблице 1 представлено функциональное назначение этих выводов.

Таблица 1. Функциональное назначение выводов SD-карт

Интерфейс SPI

Интерфейс SD

Карты SDC

Карты miniSD

Карты microSD

Хотя с помощью SPI организация связи хост-контроллера с картой не вызывает затруднений, все же шина SD предоставляет больше возможностей и позволяет пересылать информацию с большей скоростью за счет наличия четырех линий передачи данных. Поэтому ниже более подробно рассмотрим именно этот способ работы с SD-картой.

Передача данных по шине SD

Связь с SD-картой осуществляется по 6 информационным линиям: 4 линиям данных (DAT0, DAT1, DAT2, DAT3), линии синхронизации (CLK), линии передачи команд (CMD). При подключении к контроллеру линии данных и линия передачи команд должны быть подтянуты к питанию, как показано на Рисунке 2.

Запись и чтение данных выполняются поблочно. Обычно блок состоит из 512 байтов. Передача данных и служебной информации основана на модели взаимодействия «команда-ответ». Перед передачей или приемом данных хост-контроллер должен отправить соответствующую команду по линии CMD. По этой же линии от SD-карты должен прийти ответ, после которого может быть осуществлено требуемое действие. Стандарт SD поддерживает присутствие нескольких ведомых на шине, в таком случае хост-контроллер может посылать команды широковещательно. Команда имеет четкую структуру, состоящую из 48 бит: 1 стартовый бит, 1 бит передачи (установлен в 1), 6 бит для индекса команды, 32 бита для аргумента, 7 бит для контрольной суммы и 1 стоповый бит. Ответ может иметь такую же 48-битную структуру (в этом случае бит передачи установлен в 0) или состоять из 136 битов (т. н. формат длинного ответа): 1 стартовый бит, 1 бит передачи (установлен в 0), 6 зарезервированных битов, 127 битов содержимого регистров CID (Card Identifiction Register) или CSD (Card Specific Data Register) и контрольной суммы, 1 стоповый бит.

В начале работы с картой хост-контроллер перезагружает карту с помощью команд GO_IDLE_STATE (CMD0) и IO_RW_DIRECT (CMD52) . Полный список команд с описанием можно найти в (приложение A). После перезагрузки карта восстановит свои настройки по умолчанию, и ее адрес будет равен RCA = 0x0001. Если к хосту подключено несколько карт, то с помощью команды SET_RELATIVE_ADDR (CMD3) он задает каждой карте собственный адрес. Также в начале работы выполняется проверка поданного на карту напряжения. Напряжение карты должно быть в строго установленном диапазоне от 2.7 до 3.6 В. В связи с этим хост-контроллер с помощью команды SEND_OP_COND (CMD1 или ACMD41 ) обязан узнать текущее напряжение на карте и прекратить с ней работу, если оно не входит в требуемый диапазон. Таков общий принцип инициализации карты, для выполнения которой, в зависимости от типа карты (MMC, SD, SD I/O), могут использоваться другие команды и выполняться дополнительные шаги, поэтому при реализации низкоуровневого интерфейса нужно внимательно прочитать документацию на карту и изучить команды CMD.

Во время записи хост передает карте один или несколько блоков, используя команду WRITE_BLOCK (CMD24) или WRITE_MULTIPLE_BLOCK (CMD25) , соответственно, при этом в конце каждого блока хост записывает контрольную сумму. Карта, запись данных для которой разрешена, всегда будет в состоянии принять блок(и), но если контрольная сумма не совпадет, то карта сообщит об ошибке и не запишет текущий блок в свою память, а в случае пакетной передачи следующие блоки будут проигнорированы.

Передать информацию хосту, то есть выполнить чтение, также можно одним блоком с помощью команды READ_SINGLE_BLOCK (CMD17) или пакетом из нескольких блоков с помощью команды READ_MULTIPLE_BLOCK (CMD18) . В случае пакетной передачи хост может прервать чтение в любое время, отправив команду STOP_TRANSMISSION (CMD12) . Если в ходе передачи нескольких блоков внутренний контроллер карты зафиксирует ошибку, то он остановит передачу данных хост-контроллеру, но оставит карту в режиме передачи данных. В таком случае хосту придется принудительно завершить чтение с помощью команды CMD12 , при этом в ответе на эту команду карта сообщит об ошибке чтения.

Организация правильной работы шины SD является достаточно трудоемким процессом, поскольку помимо общих ситуаций, описанных выше, необходимо предусматривать различные нюансы в поведении карты и реализовывать дополнительные обработчики ошибок. Поэтому наиболее рациональным решением будет использование специальных библиотек, позволяющих разработчику не вдаваться в подробности передачи данных на аппаратном уровне и существенно сократить время разработки. Одной из таких библиотек, о которой пойдет речь ниже, является библиотека-драйвер stm324xg_eval_sdio_sd для популярных микроконтроллеров , позволяющая существенно упростить работу с модулем SDIO, предназначенным для взаимодействия с SD-картами.

Драйвер stm324xg_eval_sdio_sd

Этот драйвер представляет собой библиотеку функций, с помощью которых можно реализовать высокоуровневый интерфейс для обмена данными с SD-картой. Драйвер поставляется для работы с отладочной платой STM324VG (UtilitiesSTM32_EVALSTM3240_41_G_EVAL), но после изменения функций, связывающих эту библиотеку с низкоуровневым интерфейсом SDIO он может функционировать со многими микроконтроллерами семейства STM32, в составе которых имеется модуль SDIO. Из предыдущего предложения следует, что к проекту должны быть подключены файлы из стандартной библиотеки Standard Peripheral Library , обеспечивающие функционирование модуля SDIO на низком уровне. Например, для микроконтроллеров серии STM32F4xx это будут файлы stm32f4xx_sdio.c и stm32f4xx_sdio.h .

Перед использованием функций драйвера программист должен связать этот драйвер с аппаратной частью, то есть настроить линии модуля SDIO. Для этого ему нужно в основном файле своей программы main.c создать функции SD_LowLevel_Init() (для включения модуля SDIO) и SD_LowLevel_DeInit() (для отключения модуля SDIO), в которых необходимо выполнить конфигурирование этих линий. Если программист желает использовать модуль прямого доступа к памяти для увеличения скорости работы с SD-картой, то ему также нужно будет создать функции SD_LowLevel_DMA_TxConfig() и SD_LowLevel_DMA_RxConfig() , отвечающие за передачу и прием данных с помощью модуля ПДП. В качестве примера инициализации четырех указанных функций можно взять код, имеющийся в файле stm324xg_eval.c из (UtilitiesSTM32_EVALSTM3240_41_G_EVAL).

Теперь рассмотрим основные функции для работы с SD-картой, предоставляемые этим драйвером. Для того, чтобы инициализировать карту, нужно вызвать функцию SD_Init() , которая настраивает модуль SDIO, обращаясь к SD_LowLevel_Init() , проверяет тип SD-карты, получает служебную информацию из регистров CID и CSD, задает скорость передачи данных (по умолчанию 24 МГц) и устанавливает ширину шины (4 бита). Прочитать данные, полученные с карты, можно с помощью функций SD_ReadBlock() (для чтения одного блока) и SD_ReadMultiBlocks() (для чтения нескольких блоков). Чтобы записать данные на карту, используют функции SD_WriteBlock() (для записи одного блока) и SD_WriteMultiBlocks() (для записи нескольких блоков). Эти функции чтения и записи принимают три аргумента: buffer (переменная-буфер, в которую должны помещаться данные для чтения и записи), address (адрес ячейки памяти SD-карты) и block_size (всегда 512, поскольку эти функции работают только с блоками длинной 512 байтов). Для стирания определенной области памяти карты имеется функция SD_Erase() . В качестве аргументов она принимает startaddr и endaddr. В первом указывается адрес ячейки памяти, с которой начнется стирание, а во втором - адрес ячейки, на которой стирание будет завершено.

Передача данных между модулем SDIO и памятью микроконтроллера может осуществляться как обычным путем через центральный процессор, так и через блок прямого доступа к памяти. Для выбора необходимого режима нужно в файле stm324xg_eval_sdio_sd.h раскомментировать либо строчку #define SD_POLLING_MODE (обычный режим), либо строчку #define SD_DMA_MODE (режим ПДП). После любой операции записи или чтения необходимо с помощью функции SD_GetStatus() проверять, завершила ли карта текущую операцию, и готова ли она к приему или отправке новых данных. Если эта функция вернула значение SD_TRANSFER_OK, то передача завершена успешно, возврат SD_TRANSFER_BUSY означает, что канал передачи занят, а возврат SD_TRANSFER_ERROR сообщает об ошибке передачи. Все эти значения определены в структуре SDTransferState , записанной в stm324xg_eval_sdio_sd.h . Если передача информации выполнялась через блок ПДП, то дополнительно нужно проверять, завершил ли контроллер ПДП все операции по пересылке данных. Это делается с помощью функции SD_ReadWaitOperation() . Также стоит отметить, что передача через блок ПДП завершается прерыванием, поэтому программисту необходимо организовать вызов функции SD_ProcessIRQ() в обработчике прерываний модуля SDIO SDIO_IRQHandler() и вызов функции SD_ProcessDMAIRQ() в обработчике прерываний DMA2 DMA2_Streamx_IRQHandler() .

Для лучшего понимания принципа работы драйвера stm324xg_eval_sdio_sd можно воспользоваться рабочим примером из папки SDIOSDIO_uSDCard (ProjectSTM32F4xx_StdPeriph_ExamplesSDIO). С помощью этой тестовой программы можно выполнить стирание определенной области памяти карты, запись данных по определенному адресу, чтение данных по этому же адресу с последующим сравнением отправленной и принятой информации. Идентичность буфера приема и буфера отправки является свидетельством того, что модуль SDIO, шина передачи информации и SD-карта функционируют нормально.

Таким образом, можно сказать, что SD-карты являются достойными конкурентами USB флеш-накопителей, когда речь заходит о проектировании малых встраиваемых систем, требующих хранения больших объемов данных. Передавать информацию с карты и на карту можно с помощью интерфейса SPI или по шине SD, которая разработана для этих целей и обеспечивает высокую скорость передачи. Реализация связи с картой существенно упрощается при использовании специальных драйверов, облегчающих работу с аппаратной частью и предлагающих программистам простые в использовании функции. Но, к сожалению, записанные в произвольном порядке данные не будут восприняты какой-либо операционной системой, например, Windows, поэтому в следующей части будет рассмотрен порядок работы с SD-картой, имеющей файловую систему FAT.

Список источников

SD и microSD карты могут существенно расширить возможности проектов ардуино, работающих с большими объемами данных: регистраторов данных, метеостанций, систем умного дома. Платы arduino оснащены сравнительно небольшой внутренней памятью, всего до 4 килобайт, включая и флэш-память, и EEPROM. Этой памяти не хватит для записи больших объемов данных, тем более, если плата будет постоянно выключаться или выключаться. Подключение SD карты ардуино в качестве внешнего накопителя позволяет многократно увеличить место для хранения любой информации. Съемные накопители SD стоят дешево, легко подключаются и удобны в использовании. О правильном подключении SD карты к Arduino и пойдет речь в статье.

Работа с памятью SD в ардуино не представляет особых трудностей. Самым простым способом является подключение готового модуля и использование стандартной библиотеки. С этого варианта мы и начнем.

Использование готового модуля обладает различными преимуществами. Это довольно простое и удобное средство для работы с большим объемом данных. Он не требует особых навыков в подключении, все разъемы подписаны прямо на плате. За удобство приходится платить, но стоимость модуля относительно не велика, его легко можно найти по доступным ценам в российских и зарубежных интернет-магазинах.

Универсальный модуль представляет собой обыкновенную плату, на которой помещены слот для карты, резисторы и регулятор напряжений. Он обладает следующими техническими характеристиками:

  • Диапазон рабочих напряжений 4,5-5 В;
  • Поддержка SD карты до 2 Гб;
  • Ток 80 мА;
  • Файловая система FAT 16.

Модуль SD-карты реализует такие функции как хранение, чтение и запись информации на карту, которая требуется для нормального функционирования прибора на базе микроконтроллера.


Естественно, у недорогих модулей карт памяти есть и недостатки. Например, самые дешевые и распространенные модели поддерживают только карты до 4Гб и почти все модули позволяют хранить на SD карте файлы объемом до двух гигабайт – это ограничение используемой в большинстве моделей файловой системы FAT.

Еще одним недостатком карт памяти является относительно долгое время записи, однако существуют пути работы с ней, позволяющие увеличить ее скорость работы. Для этого используется механизм кэширования, когда данные сначала копятся в оперативной памяти, а потом сбрасываются за раз на карту памяти.

Платы Arduino для работы с SD

Для работы с SD card существует несколько различных плат:

  • Arduino Ethernet – эта плата оснащена специальным модулем для вывода данных. Для выхода CS используется контакт 4. Для правильной работы нужно применять команду SD.begin(4).
  • Adafruit Micro-SD – это отладочная плата, которая используется при работе с Micro-SD картами.
  • Sparkfun SD – закрепляется сверху Ардуино, для выхода CS использует 8 контакт. В новой версии платы есть соединение с 3.3 В и встроен шестиразрядный инвертор.

Подключение SD и microSD к ардуино

Существует два вида карт – microSD и SD. Они одинаковы по подключению, структуре и программе, различаются же только размером. Перед работой советуется отформатировать карту SD. Обычно новые карты уже отформатированы и готовы к работе, но если используется старая карта, то лучше провести форматирование в файловой системе Arduino. Для проведения процедуры на компьютере должна быть установлена библиотека SD, желательно FAT16. Для форматирования на Windows нужно щелкнуть на иконке карты и нажать “Format”.

Для подключения карты используется 6 контактов, взаимодействие производится по интерфейсу SPI. Она выглядит на плате как разъем на лицевой поверхности с шестью штырями. Чтобы подключить карту, нужны сам контроллер, модуль карты и 6 проводов. Помимо SPI существует режим SDIO, но он сложен в реализации и слабо совместим с Ардуино. SPI легко налаживается для работы со всеми микроконтроллерами, поэтому советуется использовать именно его.

Подключение цифровых выводов производится так: для платы Arduino Nano или Uno контакт MOSI подключается к D11, MISO к D12,SCK к D13, CS к 4, VCC на +5 В,.GND к GND. На плате имеются разъемы для подключения к 3,3 и 5 вольтам. Питание самой карты составляет 3,3 вольт, поэтому проще применять микроконтроллер с таким же питанием, в ином случае нужен преобразователей уровней напряжения. На самых распространенных платах ардуино такой выход есть.

При подключении SD карты нужно учитывать соответствие SPI контактов для разных тип плат Arduino:

Библиотека ардуино для работы с SD и microSD

Для удобства работы с внешними накопителями данных в среде Arduino IDE доступны уже готовые библиотеки. Ничего дополнительно скачивать или устанавливать в большинстве случаев не понадобится.

Для подключения библиотеки в скетче нужно использовать инструкцию include:

#include #include

Библиотека SPI нужна для правильной работы устройств, подключаемых по SPI.

Библиотечные функции нужно для считывания и записи данных на карту. Библиотека может поддерживать SD и SDHC карты.

Имена записываются в формате 8.3, то есть 8 знаков для названия, 3 для расширения. Путь к файлу записывается с помощью слэшей «/».

Встроенные примеры библиотеки SD

В Arduino IDE встроены готовые примеры для быстрого изучение функций бибилотеки:

  • Card Info – это извлечение информации, хранящейся в SD карте. С ее помощью можно узнать, в какую файловую систему отформатирована карта, наличие свободного места, какие данные записаны.
  • Yun Datalogger – позволяет записывать лог-данные с трех сенсоров на карту.
  • Datalogger – регистрирует и созраняет данные, полученные с датчика на карту.
  • Dump File – считывание данные с карты, передает их в серийный порт.
  • Files – создает и удаляет данные. Существует функция file.write(), которая помещает записанные данные в буфер. Перемещение информации на карту происходит при вызове функций flush() или close(), поэтому важно закрывать его после каждого открытия файла, иначе данные будут потеряны.
  • Read Write – записывает и считывает файлы с карты.

Функции библиотеки SD

Ардуино-библиотека SD содержит различные функции, с помощью которыми можно управлять данными. Функции класса SD:

  • begin() – функция инициализирует библиотеку, присваивает контакт для сигнала.
  • exists() – призвана проверить, имеется ли на карте необходимая информация.
  • mkdir() – позволяет создать нужную папку на карте памяти.
  • rmdir() – с помощью этой функции можно удалить папку. Важно, чтобы удаляемая папка была пустой.
  • open() – позволяет открыть файл, который нужен для записи или чтения. Если нужный файл отсутствует на карте, то он будет создан.
  • remove() – удаляет любой файл.

В ответ на все эти функции должно прийти одно из значений – true, в случае удачного завершения операции и false при неудаче.

Создание, редактирование и удаление файлов.

Для работы с файлами в ардуино существует класс File. В него входят функции, которые предназначены для записи и чтения информации с карты:

  • available() – проверяет наличие в файле байт, которые доступны для чтения. В ответ приходит количество места, которое доступно для чтения.
  • close() – закрывает файл, перед эти проверяет, сохранены ли данные на карту.
  • flush() – функция позволяет убедиться, что данные записаны на карту.
  • name() – возвращает указатель на имя.
  • peek() – считывает байты данных, при этом не перемещает указатель на следующий символ.
  • position() – находит текущее положение указателя в файле.
  • print() – выводит данные в отдельный файл.
  • println() – печатает данные в файл до места, где появляется символ перевода каретки и пустая строка.
  • seek() – меняет положение текущей позиции в файле.
  • size() – выводит информацию о размере данных.
  • read() – считывает информацию.
  • write() – производит запись в файл.
  • isDirectory() – с помощью этого метода происходит проверка, является ли файл директорией, то есть каталогом или папкой.
  • openNextFile() – выводит имя последующего файла.
  • rewindDirectory() – возвращает к первому файлу в директории.

Для корректной работы платы нужно проследить, чтобы был сконфигурирован SS выход.

Скетч примера работы с SD библиотекой ардуино

Ниже приведен скетч, демонстрирующий пример работы с модулем карты памяти.

/* Регистратор данных с использованием SD карт Пример сохранения данных с аналоговых портов на SD карте. Данные будут сохраняться в файле в виде набора строк с разделителем полей в виде символа "," Схема подключения: * Аналоговые сенсоры подключаются к аналоговым пинам * Модуль SD карты подключен в SPI по стандартной схеме: ** MOSI - пин 11 ** MISO - пин12 ** CLK - пин 13 ** CS - pin 4 */ #include #include const int PIN_CHIP_SELECT = 4; void setup() { Serial.begin(9600); Serial.print("Initializing SD card..."); // Этот пин обязательно должен быть определен как OUTPUT pinMode(10, OUTPUT); // Пытаемся проинициализировать модуль if (!SD.begin(PIN_CHIP_SELECT)) { Serial.println("Card failed, or not present"); // Если что-то пошло не так, завершаем работу: return; } Serial.println("card initialized."); } void loop() { // Строка с данными, которые мы поместим в файл: String logStringData = ""; // Считываем данные с портов и записываем в строку for (int i = 0; i < 5; i++) { int sensor = analogRead(i); logStringData += String(sensor); if (i < 4) { logStringData += ","; } } // Открываем файл, но помним, что одновременно можно работать только с одним файлом. // Если файла с таким именем не будет, ардуино создаст его. File dataFile = SD.open("datalog.csv", FILE_WRITE); // Если все хорошо, то записываем строку: if (dataFile) { dataFile.println(logStringData); dataFile.close(); // Публикуем в мониторе порта для отладки Serial.println(logStringData); } else { // Сообщаем об ошибке, если все плохо Serial.println("error opening datalog.csv"); } }

Создание файла и выбор названия для arduino SD card

Создание файла – одна из самых распространенных задач, возникающих при работе с SD картами в ардуино. Как мы убедились в предыдущем скетче, для создания файла достаточно просто открыт его. Если мы захотим проверить, есть ли такой файл, можно использовать функцию exists():

  • SD.exists(“datalog.csv”);

Функция возвращает TRUE, если файл существует.

Популярной практикой при создании проектов – регистраторов данных является разбивка больших файлов на более мелкие, которые удобнее обновлять и открывать на компьютере. Например, вместо одного очень большого файла datalog.csv на SD карте можно иметь несколько маленьких, добавляя к концу номер по порядку: datalog01.csv, datalog02.csv и т.д.
Вот пример скетча, который поможет вам выполнить эту работу:

Char filename = "datalog00.CSV"; // Первоначальное название for (uint8_t i = 0; i < 100; i++) { filename = i / 10 + "0"; filename = i % 10 + "0"; if (! SD.exists(filename)) { // Проверяем наличие logfile = SD.open(filename, FILE_WRITE); break; // Дальше продолжать смысла нет } }

Заключение

Как мы с вами убедились, подключить SD карту памяти к Ардуино и использовать ее в проекте не очень сложно. Для этого есть готовые библиотеки в Arduino IDE и самые разнообразные варианты модулей. Приобрести карту памяти можно в любом магазине электроники, они стоят недорого, при этом позволяют существенно расширить потенциал платы Ардуино. С использованием карт памяти можно собирать и сохранять для последующего анализа большие объемы данных. С помощью нашей статьи мы сможете наделить памятью свои исследовательские проекты, создать системы голосового оповещения для умного дома, создать простой wav-проигрыватель и многое другое.

Существует множество различных типов носителей данных на основе так называемой флеш-памяти. Мы пользуемся обычными флешками для передачи файлов друг-другу, micro-SD картами для увеличения свободного места в смартфонах, даже вместо старого доброго жесткого диска в современных ноутбуках используем SSD носители — ту же флеш-память. Флеш-память не имеет движущихся частей, в отличие от старинных дискет и более новых жестких дисков. Скорость чтения и записи такой памяти выше чем у всех прежних носителей, а энергопотребление — наоборот ниже. Другими словами, если мы хотим в наших электронных устройствах и роботах хранить какие-то данные, то рационально будет воспользоваться именно флеш-памятью. Зачем может понадобиться карта памяти? Например, для того, чтобы записывать на неё данные с различных датчиков нашего устройства. Кроме самих показаний датчиков, рационально еще записывать время съема этих показаний — это называется журналированием. Таким образом, подключив к Ардуино датчики температуры, влажности и давления, а также часы реального времени и карту памяти мы сможем сделать настоящую погодную станцию! Разберем как именно карта памяти подключается к Ардуино и каким образом осуществляется её запись и чтение.

1. Подключение модуля micro-SD карт к Ардуино

В этом уроке мы будем читать и записывать данные на micro-SD карту. В плане подключения в Ардуино, модуль micro-SD ничем не отличается от модуля для обычных SD карт. Модуль подключается к Ардуино по SPI шине, а значит нужно соединить уже знакомые по другим урокам контакты в стандартном порядке:
Модуль micro-SD карт GND VCC CS MOSI MISO SCK
Ардуино Уно GND +5V 4 11 12 13
Принципиальная схема
Внешний вид макета

2. Программа для чтения micro-SD карты

Чтобы проверить работу устройства, напишем простую программу, которая будет лишь считывать с карты служебную информацию: тип карты, тип файловой системы, размер первого раздела и список файлов на нём. #include #include Sd2Card card; SdVolume volume; SdFile root; const int chipSelect = 4; void setup() { Serial.begin(9600); Serial.print("\nInitializing SD card..."); if (!card.init(SPI_HALF_SPEED, chipSelect)) { // неверное подключение или карта неисправна Serial.println("initialization failed"); return; } else { // всё ок! Serial.println("Wiring is correct and a card is present."); } // считываем тип карты и выводим его в COM-порт Serial.print("\nCard type: "); switch (card.type()) { case SD_CARD_TYPE_SD1: Serial.println("SD1"); break; case SD_CARD_TYPE_SD2: Serial.println("SD2"); break; case SD_CARD_TYPE_SDHC: Serial.println("SDHC"); break; default: Serial.println("Unknown"); } // инициализация файловой системы if (!volume.init(card)) { // неверная файловая система Serial.println("Could not find FAT16/FAT32 partition."); return; } // считываем тип и вычисляем размер первого раздела uint32_t volumesize; Serial.print("\nVolume type is FAT"); Serial.println(volume.fatType(), DEC); Serial.println(); volumesize = volume.blocksPerCluster(); // блоков на кластер volumesize *= volume.clusterCount(); // кластеров volumesize *= 512; // 512 байтов в блоке, итого байт.. Serial.print("Volume size (bytes): "); Serial.println(volumesize); Serial.print("Volume size (Kbytes): "); volumesize /= 1024; Serial.println(volumesize); Serial.print("Volume size (Mbytes): "); volumesize /= 1024; Serial.println(volumesize); Serial.println("\nFiles found on the card (name, date and size in bytes): "); root.openRoot(volume); // выводим список файлов root.ls(LS_R | LS_DATE | LS_SIZE); } void loop(void) { } Загружаем программу в Ардуино и открываем монитор COM-порта:
Если появилась подобная информация, значит с картой и модулем всё в порядке. Можно приступать к дальнейшей работе.

3. Программа для записи данных на micro-SD карту

Теперь попробуем создать новый файл на карте и записать туда простую фразу «Hello from robotclass». #include #include const int chipSelect = 4; void setup() { Serial.begin(9600); if (!SD.begin(chipSelect)) { Serial.println("Card failed, or not present"); return; } // строка, которую мы запишем в файл String dataString = "Hello from RobotClass"; // открываем файл, в который будет записана строка File dataFile = SD.open("test.txt", FILE_WRITE); if (dataFile) { // записываем строку в файл dataFile.println(dataString); dataFile.close(); Serial.println("Success!"); } else { // выводим ошибку если не удалось открыть файл Serial.println("error opening file"); } } void loop() { } Загружаем программу. Затем выключаем Ардуино, достаем микро-SD карту из модуля и проверяем на компьютере её содержимое. В корне карты должен появиться файл test.txt с нашей фразой «Hello from RobotClass». Примечание! Имя файла, которое указывается в функции open не должно содержать более 8 букв (не включая расширение).

4. Программа для чтения данных с micro-SD карты

Наконец, прочитаем файл test.txt и выведем в COM-порт текст из него. #include #include const int chipSelect = 4; void setup() { Serial.begin(9600); if(!SD.begin(chipSelect)){ Serial.println("initialization failed!"); return; } // открываем файл для чтения File myFile = SD.open("test.txt"); if (myFile) { // считываем все байты из файла и выводим их в COM-порт while (myFile.available()) { Serial.write(myFile.read()); } // закрываем файл myFile.close(); } else { // выводим ошибку если не удалось открыть файл Serial.println("error opening test.txt"); } } void loop() { } Загружаем программу и открываем монитор COM-порта. На экране должен появиться весь текст из файла test.txt

Заключение

В следующем уроке мы попробуем добавить в схему часы реального времени и датчик температуры. Оставив такое устройство на целый день мы сможем в итоге построить дневной график температуры.

Как известно, карты памяти SD совместимы с интерфейсом SPI, поэтому их легко можно подключить к микроконтроллеру и наладить с ними обмен данными. Адаптеры для карт типа microSD также являются доступными, из такого адаптера мы можем изготовить слот для карты microSD для нашего макета. На фотографиях ниже показан внешний вид изготовленного адаптера для подключения к макетной плате.

В проект изначально использовалась карта памяти microSD объемом 1 ГБайт. Микроконтроллер - ATmega8 или ATmega32, работающий на частоте 8 МГц от внутреннего RC осциллятора. Кроме того, для подключения макета к персональному компьютеру для мониторинга данных использовался интерфейс RS-232. Для преобразования логических уровней интерфейса используется микросхема MAX232 . Для питания схемы необходим стабилизированный источник питания 3.3 В (микросхема MAX232 рассчитана на напряжение питания 5 В, однако, как показала практика, сохраняет работоспособность при 3.3 В). Подключение карты памяти по 7-проводной схеме, согласно распиновке (см. рис).

Принципиальная схема для микроконтроллера ATmega8.

Подтягивающие резисторы R1, R2 номиналом 51 кОм интерфейса SPI придают лучшую стабильность при работе с различными картами. Стабилитроны D1, D2 предназначены для защиты карты памяти при работе внутрисхемного программатора (ISP). Выводы микросхемы MAX232 VCC и GND на схемах не указаны, но их необходимо подкличить к соответствующим точкам схемы.

Принципиальная схема для микроконтроллера ATmega32

Принципиальная схема для микроконтроллера ATmega32 (добавлены часы реального времени на микросхеме DS1307)

Как вы заметили, питание последнего варианта устройства осуществляется от источника 12 В, а на плате установлены два регулятора напряжения 5.0 В (LM7805) и 3.3 В (LM1117-3.3). Для питания интерфейса SD карты используется 3.3 В, вся остальная часть схемы питается от источника 5.0 В. Микросхема часов реального времени DS1307 в стандартном включении и подключена к интерфейсу I2C микроконтроллера.

Сперва был изучен «сырой» формат передачи данных, на примере операций чтения любого блока данных, чтения и записи нескольких блоков данных, стирания нескольких блоков, записи данных в любой блок памяти SD. Устройство, собранное на макетной плате, подключалось к компьютеру по интерфейсу RS-232. Для отображения прочитанных данных с карты памяти, а также для ввода и записи данных на карту используется программа HyperTerminal (или аналогичная) на компьютере.

После удачной реализации обмена данными без спецификации, карта памяти была отформатирована (FAT32) в операционной системе Windows XP, затем на карту были записаны несколько текстовых файлов, директорий и другие типы файлов (в корневую директорию карты). После этого были написаны подпрограммы и функции по работе с файловой системой FAT32 для чтения файлов, для получения списка файлов на карте памяти (с использованием HiperTerminal), для получения информации о полном и свободном объеме памяти.

Вид окна программы HiperTerminal с функциями по работе с картой памяти SD:

Пользователю предлагаются свыше 10 опций по работе с картой памяти (для варианта с часами).

Опции 0 - 4 - это низкоуровневые функции. Gосле использования опций 0 - 3 Вам необходимо переформатировать карту перед использованием FAT32 подпрограмм.
Опции 5 - 9 - относятся к файловой системе FAT32. На данный момент поддерживаются только короткие имена файлов (8 Байт - имя файла, 3 Байта - расширение файла). Если будут записаны файлы с длинными именами, то они будут отображены в терминальной программе в коротком формате. Для тестирования этих опций не забудьте отформатировать карту в файловой системе FAT32, записать несколько директорий и текстовых файлов.

Описание опций:

0 - Erase Blocks - стирание выбранного количества блоков начиная с указанного.
1 - Write Single Block - запись данных в блок с определенным адресом. Данные вводятся с клавиатуры в программе Hiperterminal;
2 - Read Single Block - чтение данных с блока с определенным адресом. Прочитанные данные отображаются в окне терминальной программы;
3 - Writing multiple blocks - запись нескольких блоков, начиная с определенного адреса;
4 - Reading multiple blocks - чтение нескольких блоков, начиная с определенного адреса.

Примечание. Здесь функции работы с несколькими блоками (опции 3 и 4) отключены из-за нехватки памяти микроконтроллера ATmega8, поскольку эти функции не нужны для тестирования файловой системы FAT32. Для включения этих опций необходимо удалить макрос в файле SD_routines.h (#define FAT_TESTING_ONLY). И, если Вы используете ATmega8, на время тестирования опций 3 и 4 библиотека FAT32 может быть удалена с целью освобождения памяти микроконтроллера.

5 - Get File List - отображает список доступных директорий и файлов с занимаемым ими объемом памяти (в корневой директории карты);
6 - Read File - чтение указанного файла и отображение содержимого в окне терминальной программы;
7 - Create File - создать/добавить файл с указанным именем;
8 - Delete File - удалить все файлы файл с указанным именем;
9 - Read SD Memory Capacity - информация о полном и свободном объеме карты памяти (используется FSinfo сектор SD карты).

В терминальной программе последовательный порт настраивается на скорость обмена 19200 бод, без контроля потока и без проверки четности.

Для версии с часами реального времени (DS1307) на микроконтроллере ATmega32 свойства создаваемых или обновляемых файлов привязываются к дате и времени (дата создания/изменения), эти свойства прописываются в файловой таблице и могут быть проверены с помощью компьютера, а также часы могут быть полезны при сборе данных. В меню опций в терминальной программе добавлены три опции.