От редакции: затрагивая тему модернизации экономики России и развития высоких технологий в нашей стране , мы ставили задачу не только обратить внимание читателей на недостатки, но и рассказать о положительных примерах. Тем более что таковые есть, и немало. На минувшей неделе мы рассказывали о разработке в России топливных элементов, а сегодня поговорим о графене, за изучение свойств которого «бывший наш народ» недавно получил Нобелевскую премию. Оказывается, и в России, а точнее - в Новосибирске, над этим материалом работают весьма серьезно.

Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.

Тем не менее, есть и другие претенденты на лидерство в качестве полупроводникового материала. Например, графен, который после вручения Нобелевской премии за изучение его свойств, стал очень моден. Для перехода на него с кремния действительно есть основания, так как графен обладает рядом существенных преимуществ. Но получим ли мы в итоге «электронику на графене» - еще не ясно, потому что рядом с достоинствами притаились и недостатки.

Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.

Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?

Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.

Кремний - действительно уникальный материал, и именно это является причиной того, что в него вложено столько сил, средств и интеллектуальных ресурсов. Фундаментальные свойства кремния изучены настолько детально, что есть распространенное мнение о том, что ему просто не может быть замены. Однако недавние исследования графена дали зеленый свет другой точке зрения, которая заключается в том, что новые материалы могут быть доведены до такой степени, что смогут заменить кремний.

Кристаллическая структура кремния

Подобные дискуссии возникают в науке периодически, и разрешаются они, как правило, только после серьезных исследований. Например, недавно была схожая ситуация с высокотемпературными сверхпроводниками. В 1986 году Беднорц и Мюллер открыли сверхпроводимость в барий -лантан -медном оксиде (за это открытие им была присуждена Нобелевская премия уже в 1987 году - через год после открытия!), которая обнаруживалась при температуре, значительно превышающей значения, характерные для известных к тому времени сверхпроводящих материалов. При этом по строению купратные сверхпроводящие соединения значительно отличались от низкотемпературных сверхпроводников. Затем лавинообразные исследования родственных систем привели к получению материалов с температурой сверхпроводящего перехода 90 К и выше. Это означало, что в качестве хладоагента можно использовать не дорогой и капризный жидкий гелий, а жидкий азот - в газообразном виде его в природе очень много, и к тому же он существенно дешевле гелия.

Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.

Солнечная батарея на основе поликристаллического кремния

С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.

Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?

Владимир Федоров: Графен - это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.

Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру

А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.

Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов

Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.

Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные - 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.

Алла Аршинова: Прочнее алмаза?

Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.

Графит в первозданном виде

Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?

Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.

Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?

Владимир Федоров: Наверное, можно было. Просто они в свое время уехали. Их первая статья, опубликованная в Nature, написана в соавторстве с несколькими учеными из Черноголовки. По-видимому, наши российские исследователи тоже вели работу в этом направлении. Но завершить ее убедительным образом не получилось. Жалко. Возможно, одной из причин являются более благоприятные условия для работы в зарубежных научных лабораториях. Я недавно приехал из Кореи и могу сравнить условия работы, которые мне были там предоставлены, с работой дома. Так вот там я ничем не был озабочен, а дома - полно рутинных обязанностей, которые отнимают много времени и постоянно отвлекают от главного. Меня обеспечивали всем, что было необходимо, причем исполнялось это с поразительной быстротой. Например, если мне нужен какой-то реактив, я пишу записку - и на следующий день мне его привозят. Подозреваю, что у нобелевских лауреатов тоже очень хорошие условия для работы. Ну и им хватило упорства: они многократно пытались получить хороший материал и, наконец, достигли успеха. Они действительно потратили большое количество времени и сил на это, и премия в этом смысле вручена заслуженно.

Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?

Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.

Во-вторых, графен обладает высокой теплопроводностью, и это очень важно для электронных устройств. Он очень легкий, а графеновый лист - прозрачный и гибкий, его можно свернуть. Графен может быть и очень дешевым, если разработают оптимальные методы его получения. Ведь «скотч-метод», который продемонстрировали Гейм и Новоселов, не является промышленным. Этим методом получают образцы действительно высокого качества, но в очень малых количествах, только для исследований.

И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.

Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?

Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.

Есть еще один метод, также достаточно традиционный и известный уже давно - это химическое осаждение из газовой фазы с участием газообразных соединений. Его суть заключается в следующем. Сначала реакционные вещества возгоняют в газовую фазу, потом их пропускают через нагретую до высоких температур подложку, на которой и осаждаются нужные слои. Когда подобран исходный реагент, например, метан, его можно разложить таким способом, чтобы водород отщепился, а углерод остался на подложке. Но эти процессы трудно контролируемы, и идеальный слой получить сложно.

Графен— одна из аллотропных модификаций углерода

Существует и другой метод, который сейчас начинает активно применяться, - метод использования интеркалированных соединений. В графит, как и в другие слоистые соединения, можно помещать между слоями молекулы различных веществ, которые называются «молекулы гостя». Графит - это матрица «хозяина», куда мы поставляем «гостей». Когда происходит интеркаляция гостей в решетку хозяина, естественно, слои разъединяются. Это как раз то, что и требуется: процесс интеркаляции расщепляет графит. Интеркалированные соединения являются очень хорошими предшественниками для получения графена - нужно только вынуть оттуда «гостей» и не дать слоям снова схлопнуться в графит. В этой технологии важным этапом является процесс получения коллоидных дисперсий, которые можно превращать в графеновые материалы. Мы в нашем институте поддерживаем именно такой подход. На наш взгляд, это самое продвинутое направление, от которого ожидаются очень хорошие результаты, потому что из различного рода интеркалированных соединений можно наиболее просто и эффективно получать изолированные слои.

По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой

Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.

Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.

Нобелевская премия 2010 года по физике присуждена выходцам из России, работающим в Великобритании - Константину Новоселову и Андрею Гейму - за создание графена, объявила Шведская академия. Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена", говорится в сообщении на сайте премии.

Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот.

Андрей Гейм родился в Сочи в 1958 г., сейчас имеет голландское гражданство.

В 1982 г. окончил МФТИ, факультет общей и прикладной физики, получил степень кандидата физико-математических наук в Институте физики твердого тела АН СССР.

Работал научным сотрудником в Институте проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке, Ноттингемском университете, университете Бат (Великобритания), в университете Неймегена (Нидерланды), с 2001 г. - в Манчестерском университете.

В настоящее время Андрей Гейм - руководитель Манчестерского центра по мезонауке и нанотехнологиям, а также глава отдела физики конденсированного состояния.

Константин Новоселов родился в Нижнем Тагиле в 1974 г., сейчас имеет британское и российское гражданство.

В 1997 г. окончил МФТИ, факультет физической и квантовой электроники.

В настоящее время является профессором университета Манчестера.

Совместная работа выходцев из Института проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке в Университете Манчестера началась в 2001 г., когда Гейм был приглашен на должность директора Центра мезонауки и нанотехнологии Манчестерского университета. Константин Новоселов, стипендиат Фонда Леверхульма, присоединился к новым исследованиям своего соотечественника.

Гейм и Новосёлов - лауреаты премии Европейского Физического общества Europhysics Prize 2008 г. Эта высокая европейская награда присуждается ежегодно с 1975 года. Официальная формулировка присуждения премии размером в 10 тысяч евро: "за открытие и выделение свободного одноатомного слоя углерода, и объяснение его выдающихся электронных свойств".

5 октября 2010 г. стало известно, что Константину Новоселову и Андрею Гейму присуждена Нобелевская премия 2010 года по физике.

Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена" , говорится в сообщении на сайте премии.

Материал подготовлен на основе информации РИА Новости и открытых источников

МОСКВА, 5 окт - РИА Новости. Нобелевская премия 2010 года по физике стала праздником сразу для двух стран, для родины лауреатов - России, и для их нынешнего дома - Британии. Шведские академики присудили высшую научную награду Андрею Гейму и Константину Новоселову за открытие двумерной формы углерода - графена, заставив российских ученых сетовать на утечку мозгов, а британских - надеяться на сохранение финансирования науки.

"Жаль, что свои открытия Гейм и Новоселов сделали за рубежом", - сказал РИА Новости завкафедрой физики полимеров и кристаллов МГУ, академик РАН Алексей Хохлов.

"Правительству следует извлечь уроки из решения Нобелевского комитета", - прокомментировал присуждение Нобелевской премии по физике президент Королевского научного общества профессор Мартин Риз. Он напомнил о том, что многие ученые, в том числе иностранные, которые работают в Британии, в случае сворачивания финансирования могут просто уехать в другие страны.

Британское правительство 20 октября обнародует планы серьезного урезания государственных расходов . Наука и высшее образование, как ожидается, станут одной из сфер, которые сокращения затронут наиболее остро.

Выпускники МФТИ Гейм и Новоселов, работающие в Манчестере, получили премию "за новаторские эксперименты по исследованию двумерного материала графена". Они разделят между собой 10 миллионов шведских крон (около одного миллиона евро). Церемония вручения награды пройдет в Стокгольме 10 декабря, в день кончины ее основателя - Альфреда Нобеля.

Графен стал первым в истории двумерным материалом , состоящим из единичного слоя атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот. Долгое время считалось, что такая структура невозможна.

"Считали, что таких двумерных однослойных кристаллов не может существовать. Они должны потерять устойчивость и превратиться в нечто другое, ведь это фактически плоскость без толщины", - сказал РИА Новости бывший начальник лауреатов, директор Института проблем технологии микроэлектроники и особо чистых материалов РАН (ИПТМ) Вячеслав Тулин.

Однако "невозможный" материал, как оказалось, обладает уникальными физико-химическими свойствами, которые делают его незаменимым в самых разных сферах. Графен проводит электричество так же хорошо, как медь, на его базе можно создавать сенсорные экраны, фотоэлементы для солнечных батарей, гибкие электронные приборы.

"Это будущая революция в микроэлектронике. Если сейчас компьютеры гигагерцовые, то будут терагерцовые и так далее. На базе графена будут создавать транзисторы и все другие элементы электронных схем", - сказал РИА Новости профессор кафедры квантовой электроники МФТИ Алексей Фомичев.

Одну область применения графен уже нашел: это солнечные фотоэлементы. "Раньше при производстве фотоэлементов в качестве прозрачного электрода применялись оксиды индия, допированные оловом. Но оказалось, что несколько слоев графена гораздо эффективнее", - сказал Александр Вуль, завлабораторией физики кластерных структур петербургского Физико-технического института имени Иоффе РАН.

Первые с физтеха

Андрей Гейм и Константин Новоселов - первые в истории выпускники Московского физико-технического института, получившие Нобелевскую премию: до этого лауреатами становились основатели и сотрудники МФТИ - Петр Капица, Николай Семенов, Лев Ландау, Игорь Тамм, Александр Прохоров, Николай Басов, Виталий Гинзбург и Алексей Абрикосов. Гейм закончил факультет общей и прикладной физики (ФОПФ) в 1982 году, Новоселов - факультет физической и квантовой электроники (ФФКЭ) в 1997 году. Оба выпускника получили красные дипломы.

"Это суперновость. Мы очень рады решению Нобелевского комитета. МФТИ уже направил поздравления новым Нобелевским лауреатам", - сообщил РИА Новости во вторник ректор МФТИ Николай Кудрявцев.

По словам ректора, сотрудники "подняли из архива их личные дела и убедились, что это были выдающиеся студенты". При этом Андрей Гейм не поступил в институт с первого раза, год проработав на заводе, но "проявил упорство" и стал студентом МФТИ.

"В течении всего времени учебы на ФОПФе Гейм получал самые высокие отзывы от преподавателей. А выпускную работу Гейма дипломная комиссия оценила исключительно высоко", - сообщил руководитель МФТИ.

Студент 152-й группы факультета физической и квантовой электроники Константин Новоселов, как отметил Кудрявцев, "посещал занятия нерегулярно, но все задания сдавал успешно и в срок".

"И отзывы преподавателей о Новоселове - также самые высокие. Это значит, что он был настолько талантлив, что ему, в общем-то, было необязательно ходить на все занятия", - прокомментировал архивные документы ректор МФТИ.

От Шнобеля к Нобелю

Коллега Гейма, Константин Новоселов , стал самым молодым Нобелевским лауреатом с российским гражданством: 36-летний физик на шесть лет моложе своего советского коллеги Николая Басова, в 42 года получившего премию 1964 года за работы в области квантовой электроники, которые привели к созданию излучателей и усилителей на лазерно-мазерном принципе.

Самым молодым лауреатом во всей истории Нобелевской премии стал Лоуренс Брэгг, в 25 лет разделивший премию по физике со своим отцом, Уильямом Генри Брэггом. Следующие четыре позиции в списке самых молодых в истории лауреатов также занимают физики: Вернер Гейзенберг, Цзундао Ли, Карл Андерсон и Поль Дирак получили премии в 31 год.

Константин Новоселов, однако, войдет в историю премии как первый представитель поколения, родившегося в 1970-е годы. Как сообщает сайт премии, предыдущее десятилетие в списке лауреатов представляют физик Эрик Корнелл, биологи Кэрол Грейдер и Крейг Мелло, а также президент США Барак Обама, получивший Нобелевскую премию мира. Никого моложе 1961 года рождения, кроме Новоселова, в списке лауреатов нет.

Кто же он? Новоселов Константин Сергеевич!

Биография

Известный ученый родился в городе Нижнем Тагиле Свердловской области 23 августа 1974 года в семье инженера и преподавательницы по английскому языку в школе № 39, основателем и директором которой был некогда его дед, Виктор Константинович Новоселов.

Будучи в шестом классе, Константин обнаруживает незаурядные способности и занимает первое место в областной олимпиаде по физике, и чуть позже, на всесоюзной олимпиаде, повторяет успех, войдя в десятку сильнейших. В 1991 году оканчивает дополнительную Заочную физико-техническую школу и в том же году становится студентом Московского физико-технического института. Он обучается по специальности "нанотехнология" на факультете физической и квантовой электроники, и с отличием оканчивает институт, после чего его принимают на работу в ИПТМ РАН (Институт проблем технологии микроэлектроники РАН) в Черноголовке. Там он оканчивает аспирантуру под руководством Юрия Дубровского.

За границей

В 1999 году Константин Сергеевич Новоселов - физик, с уже сложившейся репутацией, переезжает в Нидерланды. Там, в Университете Неймегена, он работает вместе с Андреем Геймом. С 2001 года ученые вместе работают уже в Манчестерском университете. В 2004 году получает степень доктора философии (руководитель Ян-Кеес Маан).

На данный момент Константин Сергеевич Новоселов - профессор Королевского общества и профессор физико-математических наук в Манчестерском университете и имеет двойное гражданство (Россия и Великобритания). Сейчас проживает в Манчестере.

Исследования

Чем известен Константин Сергеевич Новоселов? По мнению аналитического агенства Thomson Reuters, русско-британский физик является одним из часто цитируемых ученых. Из-под его пера вышли 190 научных статей. Однако самым значимым его исследованием является, конечно, графен. Многие слышали это слово, которое кажется простым и знакомым. Технология действительно лаконична и элегантна, как и все гениальное. Дальнейшее изучение возможно, введет человечество в эру сверхбыстрых и сверхтонких мобильных и компьютерных устройств, электрокаров и прочных, но очень легких конструкций.

Награды

Когда Константин Сергеевич Новоселов стал работать в Манчестерском университете, его руководителем стал старший коллега из России, К тому времени тот уже давно занимался исследованиями в этой области и сумел воспроизвести механизм прилипания лап геккона, и на основе него создал липкую ленту, которую физики позже использовали в работе с графеном. До этого Гейму помогал некий китайский студент, но, по словам самого физика, работа стала продвигаться только после того, как за дело взялся Новоселов Константин Сергеевич. Нобелевская премия была присуждена им в октябре 2010 года. Новоселов теперь известен как самый молодой нобелевский лауреат по физике (за последние 37 лет), мало того, на данный момент он является единственным ученым среди нобелевских премиатов, родившимся позже 1970 года.

В том же 2010 году Новоселов получает звание командора ордена Нидерландского льва за существенный вклад в науку Нидерландов, а чуть позже, в 2011 году, указ королевы Елизаветы ll делает его рыцарем-бакалавром, уже за вклад в науку Великобритании. Торжественная церемония посвящения в рыцари проходила чуть позже, весной 2012 года, как и полагается, в Букингемском дворце. Вела ее дочь королевы, принцесса Анна.

Надо сказать, что Константин Сергеевич Новоселов, научная и общественная деятельность которого весьма обширны, получил еще одну престижную награду за исследования графена, став лауреатом премии "Еврофизика" в 2008 году. Она присуждается раз в два года, нобелевских лауреатов среди ее премиантов было всего тринадцать. Премия заключается в денежном вознаграждении и соответствующем сертификате. Также он получил премию Курти, однако уже не за графен, а за список достижений в работе со сферой низких температур и магнитных полей.

О семье и жизни

Константин Новоселов счастлив в браке с супругой Ириной. Хотя она тоже русская, познакомились ученые за границей, в Нидерландах. Ирина родом из Вологды, занимается исследованиями в области микробиологии, (диссертацию защитила в Санкт-Петербурге). У пары две дочери, двойняшки Софья и Вика родились в 2009 году.

Константин Сергеевич, по его собственным словам, не тот отец, который неделями просиживает в лаборатории, пропуская детство собственных детей. Для него изобрести самый маленький в мире транзистор и научить дочь считать до двадцати семи - нечто, стоящее в одном ряду. "Этого никто никогда до тебя не делал", - говорит он.

В свою очередь, его родители никогда не пытались ограничивать сына в интересах. Они всегда были уверены, что их сын очень одарен, и, как говорит сам физик, не удивились, когда он получил Нобелевскую премию.

В интервью для журнала Esquire он признался, что мечтает научиться играть на фортепиано. Он обучается, однако, по его собственному признанию, результаты пока посредственные.

Об СССР

Константин Сергеевич родился в СССР и получил отличное образование. Он сам признается, что такие глубокие знания мало где можно получить. Но в Россию возвращаться не собирается. Пожалуй, именно из-за этого некоторые журналисты невольно упрекают его в отсутствии патриотизма. На это ученый отвечает, что дело не в деньгах, просто в Британии работать спокойнее, ведь в твои дела никто не вмешивается.

Новоселов относится к жизни легко, не зацикливается на неудачах - это одно из его основных правил. Если возникают трудности в отношениях с людьми, он старается не доводить до разрыва, но, если это неизбежно, оставляет последнее слово за другим человеком. У известного физика возникает множество обычных жизненных проблем, например, он был бы готов потратить любые деньги, лишь бы получить немного свободного времени.

Но свою жизнь на работу и отдых он не делит, возможно, в этом и есть ключ продуктивности ученого. Дома он думает о физике, а на работе - просто отдыхает душой.

Что такое графен

Несмотря, конечно, на все достижения в области физики, главной работой Новоселова был и пока остается графен. Эта структура, которую впервые получить в лабораторных условиях удалось именно нашим соотечественникам, является двумерной "сеткой" из атомов углерода толщиной всего в один атом. Сам Новоселов утверждает, что технология не является сложной и создать графен может каждый, чуть ли не из подручных средств. Он говорит, что достаточно для начала купить хороший графит, хотя можно использовать даже карандаши, а также потратиться немного на кремниевые подложки и скотч. Все, набор для создания графена готов! Таким образом, материал не станет достоянием исключительно больших корпораций, Новоселов и Гейм буквально подарили его всему миру.

Удивительные свойства

Также физик удивляется электронным свойствам этого материала. По его словам, графен можно использовать в транзисторах, что и пытаются уже сейчас делать в некоторых компаниях, заменяя привычные детали в мобильных устройствах.

По утверждениям Новоселова, графен произведет революцию в технологиях. Неотъемлемая часть любого фантастического фильма - это невероятные гаджеты, прозрачные, тонкие, не бьющиеся и с огромным функционалом. Если графен постепенно заменит устаревший кремний, технологии из кинематографа появятся и в жизни.

Чем еще примечательны исследования Новоселова и Гейма? Тем, что они практически мгновенно перекочевали из лабораторий на конвейеры, и даже больше - оказались очень полезны уже в первые годы.

Технологии будущего

Где же сейчас применяется графен? Казалось бы, столь недавно открытый материал еще не мог распространиться широко, и отчасти это действительно так. Практически все разработки носят пока экспериментальный характер и не выпущены в массовое производство. Однако применять этот материал пытаются сейчас буквально во всех сферах, что, пожалуй, можно назвать настоящей "графеновой лихорадкой".

Сам графен, несмотря на малый вес и практически полную прозрачность (он поглощает 2 % проходящего света, ровно столько же, сколько обыкновенное оконное стекло), материал очень прочный. Недавние исследования американских ученых показали, что графен отлично смешивается с пластиком. Это в результате дает сверхпрочный материал, который можно использовать во всех областях, начиная от производства мебели и мобильных телефонов и заканчивая ракетостроением.

Из графена уже сейчас созданы опытные образцы аккумуляторов для электрокаров. Они отличаются большой емкостью и малым временем зарядки. Возможно, именно так будет решена проблема с электромобилями, и транспорт станет дешевым и экологичным.

Графен используется в разработках новых сенсорных панелей для телефонов. Если классические сенсоры могут работать только на ровной поверхности, то графен этого недостатка лишен, ведь его можно гнуть как угодно. К тому же высокая электропроводность позволит сделать отклик минимальным.

В авиации

Корпуса ракет и самолетов, сделанные с применением графена, будут в несколько раз легче, что сильно снизит затраты на топливо. Полеты станут такими дешевыми, что позволить себе путешествие на другой край земли сможет позволить себе каждый. Но, помимо пассажирских перевозок, это скажется, конечно, и на грузовых. Снабжение отдаленных уголков планеты станет гораздо лучше, а значит, жить и работать там станет больше людей.

Во вторник в Стокгольме были объявлены лауреаты Нобелевской премии по физике за 2010 год. Ими стали русские физики из университета Манчестера Андрей Гейм и Константин Новоселов. Их главное изобретение - материал под названием графен. Что такое графен, и как его можно использовать? Об этом Новоселов рассказал в ровно год назад. Ниже - статья из журнала Forbes, вышедшая в октябрьском номере в 2009 году.

Прозрачная голубая полоска на столе работает будильником. Она же показывает расписание на день, в машине развертывается в экран навигатора, на работе превращается в ноутбук, а вечером на ней можно смотреть кино. Авторы ролика об универсальном гаджете будущего, ученые из южнокорейского университета Сонгюнгван убеждены, что он будет создан в ближайшие 10 лет благодаря графену, самому тонкому во Вселенной материалу с уникальными электронными свойствами.

Это будущее приближают десятки лабораторий во всем мире. Путь от фундаментального открытия до практических результатов в случае с графеном преодолевается даже не за годы, а за месяцы. «Год назад я скептически относился к применению графена в электронике, сейчас это становится вполне реальным бизнесом», - говорит автор открытия Константин Новоселов.

Агентство Thomson Reuters в прошлом году сочло графен достойным Нобелевской премии. В список вероятных лауреатов включены Новоселов и его руководитель - Андрей Гейм, директор Центра мезоскопической физики при Манчестерском университете. «Нобелевку» они пока не получили, но их шансы с каждым годом будут расти. Даже удивительно, что материал со столь блестящими перспективами был получен с помощью липкой ленты, которая случайно не попала в мусорное ведро.

Графен представляет собой слой углерода толщиной в один атом. Миллиарды таких слоев образуют графит, из которого делают грифели для карандашей. В возможность отделить один слой никто не верил. Семьдесят лет назад Лев Ландау и Рудольф Пайерлс доказали, что таких материалов существовать не может: силы взаимодействия между атомами должны смять их в гармошку или свернуть в трубочку.

Графен оказался исключением из этого правила. Гейм и Новоселов обратили внимание на обычный скотч, с помощью которого готовят образцы графита для работы на сканирующем туннельном микроскопе. Скотч отрывает графитные слои, оставляя абсолютно гладкую поверхность. Ленту выбрасывают вместе с тем, что к ней прилипло. «За то, что мы ее подобрали и исследовали, нас обозвали garbage scientists - мусорными учеными», - смеется Новоселов. Склеивая и разлепляя ленту с хлопьями графита несколько раз, Новоселов получил то, что считалось невозможным, - слои графита толщиной в один атом. Их площадь достигала одного квадратного миллиметра: этого более чем достаточно, чтобы перенести графен на подложку и исследовать механические и электронные свойства. В 2004 году в журнале Science вышла эпохальная статья Гейма, Новоселова и их давнего коллеги Сергея Морозова. Свойства - проводимость, прочность, стабильность - оказались уникальными.

«У графена есть свойства, которых нет ни у одного материала, - говорит Новоселов, - это в буквальном смысле материя, ткань. С ней можно делать то же самое, что вот с этой салфеткой: сгибать, сворачивать, растягивать…» Бумажная салфетка неожиданно рвется у него в руках. С графеном такого не случится, замечает физик, это самый прочный материал на Земле.

Почему в графене видят материал, который вытеснит кремниевую электронику? Электроны в нем перемещаются в сотню раз быстрее, чем в кремнии. В прошлом году Гейм и Новоселов с соавторами показали, что из графена можно делать транзисторы, управляемые отдельными электронами. Все это позволит создать более миниатюрные и быстрые микросхемы, которые и греются намного меньше кремниевых.

Не хотел бы Новоселов заработать на своем открытии? Физик смотрит на меня с недоумением. Для него есть вещи поинтереснее. «Мы заканчиваем исследования задолго до того, как начинается коммерциализация, - объясняет он, - и не пытаемся заниматься технологиями». Представителей компаний, которые обращаются к ним, Гейм и Новоселов обычно отправляют в Graphene Industries - фирму, созданную их студентами. Те вручную делают пластинки графена и поштучно продают в лаборатории IBM, Intel, Samsung.

До 2020 года, по прогнозам исследовательской компании Lux Research, графен не поколеблет основы кремниевой электроники. Но уже сейчас новый материал обходит кремний по флангам, показывая себя в новых приложениях. Например, в сверхбыстрых высокочастотных транзисторах для приемников и передатчиков мобильной связи. «Опытные образцы появились в начале года, а сейчас у них уже наблюдаются рекордные показатели», - говорит Новоселов. Особенно продвинулись в их создании IBM и HRL (близкие к оборонному заказу исследовательские лаборатории, которыми совместно владеют Boeing и General Motors). В конце прошлого года HRL получили грант на 50-месячную программу графеновой электроники, которую координирует SPAWAR - инжиниринговый центр Военно-морского флота США. «Они даже не притворяются, что занимаются физикой, а прямо говорят, что делают приборы», - замечает Новоселов.

Развитие графеновой темы привлекло к ней внимание частных инвесторов. Несколько американских компаний замахнулись на производство сотен тонн графена к концу 2010 года. Такие объемы могут затоварить рынок радиочастотных транзисторов навечно, но производители пока ориентируются не на электронику.

Уже сейчас графен востребован как наполнитель для композитных материалов, говорит гендиректор фирмы XG Sciences Майкл Нокс. Гендиректор фирмы Angstron Materials Бор Джанг предлагает использовать графен в устройствах для хранения энергии - аккумуляторах и суперконденсаторах, а также топливных элементах, которые вырабатывают электроэнергию от соединения водорода с кислородом. Компания Vorbeck Materials продает Vor-ink - «чернила», позволяющие печатать электронные схемы.

Нокс узнал о графене в 2006 году от профессора Мичиганского университета Лоуренса Дрзала, который убедил его в том, что на графене можно хорошо заработать. «Я как раз продал свой предыдущий бизнес и искал какую-нибудь перспективную технологию, - вспоминает Нокс. - С тех пор ажиотаж вокруг графена непрерывно растет».

Джанг - пример ученого-предпринимателя, словно сошедший со страниц брошюры о коммерциализации технологий. С 2005 года он декан Колледжа технических и компьютерных наук при Университете Райта. Старт его компании Nanotek Instruments в 1997 году обеспечили гранты Министерства энергетики США. Затем от Nanotek отпочковалась Angstron. Свой первый патент, связанный с графеном, Джанг заявил еще в 2002-м - за два года до революционной работы русских физиков. «Их заслуга в том, что они первыми обнаружили необычные электронные свойства изолированных листов графена», - объясняет Джанг. К 2015 году он скромно планирует занять 30–40% мирового рынка графена, а еще раньше - провести IPO или продать компанию крупному инвестору. Vorbeck уже обзавелась серьезным партнером: для немецкого химического гиганта BASF фирма разрабатывает токопроводящую краску.

Чтобы фундаментальное открытие было применено на практике, оно должно обрасти тысячами изобретений. От создания первого транзистора в 1947 году до распространения интегральных схем, обеспечивших первенство кремниевой электроники, прошло почти два десятилетия. Если графеновая революция пойдет теми же темпами, универсальный гаджет, о котором мечтают южнокорейские исследователи, появится на прилавках самое позднее в 2022 году.